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Abstract

The diffusion of automation technology raises questions about the future of

work, leading to calls for policy interventions. The ongoing debate centers on

the decisions made by technology adopters. In this paper, I study supply-side

adjustments and their role in shaping policy outcomes. I focus on the global mar-

ket for industrial robots, a leading type of automation technology, where a few

multinational enterprises (MNEs) dominate sales. To evaluate how these MNEs

respond to policy changes, I collect new data on their characteristics and global

sales networks. I then develop and estimate a multi-country general equilibrium

model featuring oligopolistic multinational robot sellers. Using this model, I find

that MNEs’ market entry and pricing responses transmit internationally and

amplify the aggregate and distributional effects of policies targeting robots.
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1 Introduction

The diffusion of automation technologies, including robotics and artificial intelligence,

raises questions about the future of work. On the one hand, these technologies au-

tonomously perform several complex tasks, fostering productivity growth. On the

other, their adoption raises concerns about job displacement and inequality. For these

reasons, academics and policymakers discuss policies to regulate automation (Brynjolf-

sson and McAfee, 2014; Acemoglu and Johnson, 2023).

Current discussions focus on how policy interventions affect the production and

employment decisions of technology adopters (Guerreiro et al., 2022; Thuemmel, 2022;

Beraja and Zorzi, 2025). However, since automation technology supply is often dom-

inated by a few large multinational enterprises (MNEs) active in multiple countries,

responses from the supply side may be sizable and represent a determining factor for

the ultimate effects of any policy. Studying the supply of automation technologies is

challenging, as there is limited evidence on automation suppliers and their activities

in the global economy. Additionally, a theoretical framework that accounts for the

features of the global automation industry is necessary to disentangle adjustments in

supply and demand after a policy change.

In this paper, I offer three contributions. First, I compile novel data and document

new facts about the global market for industrial robots (henceforth “robots”).1 This

market is ideal for studying automation supply, as four MNEs account for over 50%

of global sales (Leigh and Kraft, 2018), and robots are a leading type of automation

technology (Acemoglu and Restrepo, 2020). Second, I develop a quantitative multi-

country general equilibrium model with oligopolistic multinational robot sellers and

heterogeneous households, who can be either complements or substitutes to robots in

final goods production. The model delivers predictions about how competition within

the robot industry shapes prices, wages, output, and welfare in each market. Third, I

use the model to evaluate how policy interventions targeting robot adoption shape these

outcomes in the global economy, focusing on the role of supply-side responses. I show

that ignoring MNEs’ market entry and pricing responses leads to an underestimation

of the aggregate and distributional outcomes of policies aimed at protecting workers

displaced by robots by about 20%. Moreover, policies that boost competition among

robot sellers raise output but also increase inequality due to robots’ non-neutrality.

1Industrial robots are defined by the International Organization for Standardization (ISO) as “au-
tomatically controlled, reprogrammable multipurpose manipulators”. See Section 2 for more details.
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I begin by describing the three main stages around which the global robot industry

is organized: production, integration, and adoption. Over half of the world’s robots

are produced in Japan and Germany, where most MNEs are headquartered. Along

with China, South Korea, and the US, these countries are also the top destinations for

robot adoption. The integration stage is key. Robot sales entail a bundle of generic

robots and “integration services”, such as customization, setup, and maintenance, to

adapt pre-built machines to specific production tasks. To deliver these services, robot

sellers establish local retail networks in each market they serve.

I collect data from multiple sources for each stage of the chain. I identify the MNEs

that produce and sell robots from the list of members of the International Federation of

Robotics (IFR). Information about the location of their headquarters (HQ), financial

accounts, and ownership structure comes from the Moody’s Orbis dataset. By scraping

the website of each MNE, I also geolocate their branches that sell generic robots and

integration services to users worldwide. I retrieve over 600 sales branches in total.

About 90% of them are in Orbis. Countries’ characteristics, such as the number of

robots adopted, market size, and trade flows and barriers, come from commonly used

data sources. The final dataset is a cross-section of 10 multinational robot sellers and

45 countries, pooling information between 2019 and 2021. These 10 MNEs account for

about 90% of global robot sales. The 45 countries I consider account for more than

90% of world GDP.

Using these data, I document two new facts. First, robot sales decrease as the

distance between destination countries and the robot sellers’ HQ increases. This fact

suggests that multinational robot sellers face bilateral frictions that increase with dis-

tance from their HQ, which is consistent with gravity. Second, robot sales in destination

countries are highly concentrated, with only half of all robot sellers serving the average

country in the data. This fact is consistent with robot sellers having market power.

These facts inform, and are replicated by, a multi-country general equilibrium

model featuring multinational robot sellers and heterogeneous households. To capture

oligopolistic competition among robot sellers, I build upon state-of-the-art frameworks

developed for analyzing oligopoly in general equilibrium (Atkeson and Burstein, 2008;

Gaubert and Itskhoki, 2021), adapting them to the specific features of the global robot

industry. Household behavior and their interaction with robots in production are stan-

dard and based on the canonical framework of Acemoglu and Restrepo (2018). I use

the model to assess how multinational robot sellers respond to policy interventions and
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how their responses influence equilibrium outcomes worldwide.

The model setup is as follows. Each market consists of households and perfectly

competitive final goods producers. Households buy final goods and supply either rou-

tine or non-routine labor inelastically. Firms use robots and both types of labor to

produce final goods. As standard in the automation literature, robots are substitutes

to routine workers and complements to non-routine ones. Final goods are traded in-

ternationally subject to iceberg trade costs, creating linkages across markets.

Robot supply has two key features. First, upon paying an entry cost, robot sellers

can serve multiple markets. Second, within each market, they compete to sell an

indivisible bundle of generic robots and integration services to users. This bundle,

which I refer to as a “product”, is considered non-tradable and produced in destination

markets using non-routine local labor.2 Robot sellers are heterogeneous in terms of

appeal to final goods producers, which is captured by a seller-market-specific demand

shifter. More appealing robot sellers enter more markets and charge higher markups.

Bringing the model to the data requires determining the structural parameters of

the model. The households’ and final goods producers’ parameters are standard and

can be calibrated from the data or existing literature. The robot sellers’ parameters are

new, and I estimate them using a simulated method of moments (SMM) procedure.

The SMM estimator targets moments informative about robot sellers’ entry choices

and sales, market competition, and robot adoption. It recovers the mean and standard

deviation of the appeal distribution across robot sellers, the cost of entering markets,

and the elasticity of substitution between the different products offered by robot sellers.

While jointly estimated, each parameter is intuitively informed by specific targeted

moments, which are accurately replicated. I validate the model by showing that it

matches untargeted seller and market-level moments.

I use the model to evaluate two counterfactual policy interventions. The first focuses

on protecting workers more exposed to automation. The second seeks to increase the

efficiency of the robot industry by promoting competition among robot sellers.

For the first set of policies, I examine the effects of a European-wide value-added

robot tax paid by robot adopters. This policy was discussed by the European Parlia-

ment in 2017 as part of a law aimed at protecting workers exposed to automation, and

2This assumption allows me to abstract from the proximity-concentration trade-off in the produc-
tion of generic robots and analyze competition in destination markets. It is supported by the fact
that locally provided integration services account for about two-thirds of the final price paid by robot
users (Leigh and Kraft, 2018).
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it has prompted research on the taxation of automation technology (Guerreiro et al.,

2022; Thuemmel, 2022; Costinot and Werning, 2023).3 I consider a 5% tax, in line with

the short-run optimal robot tax rate estimated for the US by Guerreiro et al. (2022).

I explore two scenarios. In the first, in line with the existing literature, robot sellers

cannot adjust market entry choices and markups after the tax is introduced. In the

second, they can adjust along both margins. Without supply-side responses, a tax re-

duces robot demand and increases the price of final goods, generating an output loss in

the EU. However, losses are not evenly borne. Routine workers experience an increase

in welfare because of their substitutability with robots, while non-routine workers face

a welfare loss due to their complementarity.

In the second scenario, a tax shrinks the total size of the market, and some robot

sellers leave the EU. Exit induces a reallocation of market shares to incumbents, who

raise their markups, leading to a stronger increase in the price of robots and a larger

output loss than in the first case. Routine workers experience smaller welfare gains,

while non-routine workers face stronger losses. Overall, supply-side responses amplify

the aggregate and distributional effects of a tax on robot adoption by about 20%.

By increasing the price of EU goods, an EU-wide robot tax also increases consumer

prices and reduces the welfare of all households outside the EU. In this case as well,

ignoring the endogenous market entry and prices responses of multinational robot sell-

ers leads to underestimating the welfare losses beyond the EU. Interestingly, because

of gravity in robot sales, an EU-wide tax disproportionally affects robot sellers head-

quartered outside the EU, who experience higher exit rates, effectively making the tax

a protectionist measure from the perspective of the EU.

For the second set of policies, I consider interventions that address inefficiencies aris-

ing from robot sellers’ market power by favoring entry into robot production and sales.

Counterfactual results show that boosting competition among robot sellers reduces

markups and prices, increasing robot adoption and final output. If entry generates

sufficiently strong pro-competitive effects, all types of workers can be made better off

However, the non-neutrality of robots implies that non-routine workers experience dis-

proportionally larger gains. Therefore, a planner that seeks to maximize efficiency but

also protect workers displaced by robots should promote competition among multina-

tional robot sellers and reallocate income towards routine workers.

3Guerreiro et al. (2022) show that when lump-sum transfers are unfeasible (e.g., because the
planner does not observe the worker type, as in Mirrlees, 1971), it is optimal to tax robot adoption
to redistribute income towards routine workers.
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Related Literature. This paper contributes to the literature on quantitative models

of MNEs’ activities (e.g., Irarrazabal et al., 2013; Ramondo and Rodŕıguez-Clare, 2013;

Ramondo, 2014; Tintelnot, 2017; Antràs et al., 2017; Arkolakis et al., 2018; Alviarez,

2019; Head and Mayer, 2019; Arkolakis et al., 2023). From a theoretical perspective,

it offers two contributions. First, instead of focusing on horizontal, vertical, or export-

platform foreign direct investment (FDI), this paper provides a model of distribution

FDI tailored to the robot industry. Second, it relaxes the conventional assumption of

monopolistic competition among MNEs, allowing for oligopolistic competition. From

an empirical standpoint, this work introduces new data on MNEs in the robot industry.

This paper also contributes to the literature on oligopoly in international trade (e.g.,

Markusen, 1981; Brander and Krugman, 1983; Brander and Spencer, 1985; Atkeson and

Burstein, 2008; Edmond et al., 2015; Neary, 2016; Parenti, 2018; Gaubert and Itskhoki,

2021; Impullitti et al., 2022; Crowley et al., 2024). The existing literature focuses on

how imperfect competition between firms shapes international trade and influences

trade policy. This paper shows how firms’ strategic behaviors influence the outcomes

of interventions beyond trade policy.

By describing how a few firms dominate the global robot industry, this paper con-

nects with the literature on global market power (e.g., De Loecker and Eeckhout, 2018;

De Loecker et al., 2020; Alviarez et al., 2020; Autor et al., 2020; Leone et al., 2024).

Properly adapted, the model developed in this paper can be used to assess the role of

market power in transmitting shocks in other globally concentrated input markets.

Finally, this paper contributes to the literature on the effects of automation tech-

nology (e.g., Acemoglu and Restrepo, 2018; Graetz and Michaels, 2018; Bessen et al.,

2019; Acemoglu and Restrepo, 2020; Acemoglu et al., 2020; Koch et al., 2021; Aghion

et al., 2020; Dauth et al., 2021; Hubmer and Restrepo, 2021; Hémous and Olsen, 2022;

Acemoglu et al., 2023; Giuntella et al., 2024) and the implications of policies targeting

automation (e.g., Humlum, 2021; Guerreiro et al., 2022; Thuemmel, 2022; Costinot

and Werning, 2023; Beraja and Zorzi, 2025). The main contribution is highlighting

the role of the supply side in shaping the outcomes of policies favoring or constraining

automation technology.

The paper unfolds as follows. Section 2 provides information about the robot

industry. Section 3 introduces the data. Section 4 describes the empirical facts. Section

5 contains the model. Section 6 discusses estimation and fit. Sections 7 and 8 analyze

the effects of a robot tax and competition policy, respectively. Section 9 concludes.
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2 Industry Background

This section provides background information about robots and the robot industry.

2.1 Industrial Robots

Industrial robots (henceforth robots) are defined by the International Organization

for Standardization (ISO) as “automatically controlled, reprogrammable multipurpose

manipulators, programmable in three or more axes, which can be either fixed in place

or mobile for use in industrial automation applications” (ISO 8372:2012). The ability

to perform different tasks without any human supervision is the main feature of these

machines (International Federation of Robotics, 2020). Using data between 1990 and

2007 on US labor markets, Acemoglu and Restrepo (2020) document that autonomy

makes robots more substitutable for workers in routine occupations compared to com-

puters and other automation technology. Overall, robots contribute to about 10% of

the total market value of the automation industry (UBS, 2020)

At the factory gate, robots are classified as relatively homogenous goods. There is

a single six-digit HS code associated with robots, and the same holds true in the US

ten-digit HTS product classification, the most disaggregated one in international trade

data.4 For comparison, another product for which these classifications coincide is white

portland cement. As explained below, robot sellers provide “integration services” to

end users to tailor generic robots to their specific production needs.

2.2 The Global Robot Industry

The global robot industry is organized along three main stages: production, integration,

and adoption. Japan assembles nearly half of the world’s new robots each year. Other

major production centers are China, Germany, Italy, South Korea, and the US (In-

ternational Federation of Robotics, 2020). More details regarding the locations where

robots are produced and the technological requirements of the production process are

in Online Appendices C.1 and C.2, respectively.

In the early 1990s, industrial robots were mostly employed in the automotive indus-

try. However, over the last 30 years, their adoption has grown across other manufac-

4Robots belong to six different types (articulated, cartesian, cylindrical, spherical, parallel, and
SCARA—Selective Compliance Assembly Robot Arm) mainly differing in terms of number of arms
and payload. All types fall within the HS6 code 847950.
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turing sectors, such as chemicals, electronics, pharmaceuticals, and even agriculture.

Overall, their global stock has increased fivefold. China, Germany, Japan, South Korea,

and the US are the major destination markets for robots (International Federation of

Robotics, 2020). Robot adopters tend to be large manufacturing companies (Acemoglu

et al., 2020), often belonging to multinational groups (Leone, 2024).

The integration stage is a key feature of the industry. Robots are sophisticated

machines, and their adoption is associated with a broader restructuring of production

(Koch et al., 2021). Therefore, robot sales entail a bundle of generic robot arms and in-

tegration services. These services involve guidance in selecting the appropriate automa-

tion solution, product customization to adapt a generic robot to a specific production

task, and post-sale support like installation, replacement, and ongoing maintenance.

Online Appendix C.3 provides examples based on case studies available from the robot

sellers’ websites. Leigh and Kraft (2018) estimate that integration services account for

about two-thirds of the final price paid by users.

The bundling of robots and integration services is crucial. While generic robots

are tradable, integration services require proximity to final demand. Therefore, sellers

must establish a retail network of branches in each market they serve, regardless of

where production facilities are located.

3 Data

This section presents new data about robot sales and the additional data sources.

3.1 Multinational Robot Sellers

Identity. I obtain a list of robot sellers using the directory of members of the In-

ternational Federation of Robotics (IFR). The original directory contains 85 members.

Among them, there are 26 firms that produce and sell robots. The remaining members

are either national associations or research institutes. To identify industry leaders, I

resort to business-related sources and the Moody’s Orbis dataset, proceeding in two

steps. First, I search for these 26 firms in magazines discussing trends in the indus-

trial robot sector. Second, I select the companies that consistently emerge as industry

leaders across searches. The final list includes ABB, Comau, Epson, Fanuc, Kawasaki,

Kuka, Nachi-Fujikoshi, Omron, Staubli, and Yaskawa. Using Orbis, I verify that these
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10 sellers account for approximately 90% of the global market share.5 Among them,

ABB, Fanuc, Kuka, and Yaskawa alone hold approximately 54% of the global market

share, as shown in Online Figure A.1. These concentration patterns align with existing

industry reports (UBS, 2020).6

Characteristics. I gather several characteristics of robot sellers from Orbis, includ-

ing information about their sectors of activity, sales, employment, fixed assets, and

R&D expenses. I also collect information about the location of robot sellers’ head-

quarters (HQ), their corporate structure, and the activities of their subsidiaries, even

those unrelated to robots. All firms are MNEs with subsidiaries in multiple coun-

tries. Using Orbis Intellectual Property, I also collect information about robot-related

patents. Among the 26 sellers registered with the IFR, the top 10 accounting for 90%

of global sales also hold 81% of the global stock of robot-related patents. See Online

Appendix C.2 for more details.

Global Sales Network. Section 2.2 emphasizes that robot sellers need a retail net-

work in each market to provide integration services to their customers. Unfortunately,

information about retail networks cannot always be obtained from Orbis for two rea-

sons. First, Orbis only links branches to sellers if they share a common owner (usually

the multinational seller itself). However, business-related case studies available on the

robot sellers’ websites suggest that some branches may also function as franchises. Sec-

ond, even among affiliates, branches that supply robots and integration services cannot

be unambiguously identified when information about their sector of activity is missing

from Orbis.

To address this limitation, I create a web scraping algorithm to retrieve information

about branches supplying robots and integration services directly from the websites of

the top 10 robot sellers. The algorithm works in two steps. First, it navigates to

the “Where to find us” section of each seller’s website, where a list of retail branches

5This share refers to 2021 but it is stable over time. Because Orbis does not report turnover by
sector, I compute global market shares using sellers’ total turnover. Since automation provision is the
primary activity of these firms, their total sales are an accurate proxy for their size in the industry.
This is not the case for other automation sectors. For example, Amazon and Microsoft dominate cloud
computing services, but their total sales in Orbis likely reflect income from their other main activities.
This makes the robot industry appealing to study market structure in the automation sector.

6For reference, Online Figure A.2 shows that firms in the robot industry are relatively small
compared to leading companies in other sectors, such as cars, smartphones, semiconductors, and
computers.
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across the world is provided. Second, it extracts and stores the name and geographical

location of each branch. Online Figure A.3 illustrates two examples of the online

information retrieved. The first branch is a subsidiary of Kuka, while the second is a

franchise selling ABB robots. Online Appendix D.1 provides additional information

about the algorithm.

Using this procedure, I identify 603 sales branches located in multiple countries,

which are shown in Online Figure A.4. Among all branches, 538 (89%) can be found in

Orbis, and I collect information about their accounts and corporate structure. Own-

ership details are available for 409 (75%) branches. Approximately 65% of them are

subsidiaries. The remaining 35% are franchises. However, since each franchise is only

listed on a single robot seller’s website, I do not distinguish between branches owned

by sellers and those operating at arm’s length.

Market Shares. I measure the market share of a seller in each market using its share

of branches in that market. This choice is motivated by the importance of physical

proximity to end-users for sales, and rests on the assumption that robot sellers with

more local branches have higher sales. In Online Appendix D.2, I provide evidence in

support of this assumption using Orbis information about branch-level sales data.7 I

prefer the definition of market shares based on branches over the one based on sales

because the latter cannot always be defined due to missing information in Orbis. I

defer a formal treatment of the relevant markets in which robot sellers compete until

Section 6.

3.2 Additional Data Sources

Robot Adoption. Data about robot adoption come from the IFR, which aggregates

cross-country firm-level information and computes the number of robots used in every

country by industry (roughly matching the NACE4 classification) and year. These

data are considered as very reliable and have been extensively used in previous research

(Graetz and Michaels, 2018; Acemoglu and Restrepo, 2020; Dauth et al., 2021).

International Trade. Information about bilateral trade flows between countries by

industry (ISIC Review 4) is obtained from the World Input-Output Tables (WIOT).

7In Online Appendix E.1, I extend the model in Section 5 to provide a micro-foundation for the
positive correlation between robot sellers’ number of branches and sales in a market.
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Bilateral trade flows by specific goods (HS6 classification) come from the CEPII BACI

dataset. These data also report the value and quantity of trade in robots.

To complement the trade data, I collect bilateral information about physical and

cultural distance between countries. Physical distance, measured as the distance be-

tween the two most populated cities of a country pair in kilometers, comes from the

CEPII gravity database. Cultural distance, measured as the probability that two ran-

dom individuals in two countries speak the same language, comes from Gurevich et

al. (2021). I obtain information on bilateral trade costs, computed using the method

developed by Novy (2013), from the ESCAP-World Bank Trade Cost Database.

Country Characteristics. Information about the characteristics of the countries

served by robot sellers come from various sources. From the World Development Indi-

cators (WDI) database of the World Bank, I collect information about GDP (in 2010

USD PPP), total population, employment, value added by industry, and land area.

The geographical coordinates of each country come from the CEPII gravity database.

3.3 Final Sample

Summary Statistics. The matched dataset is a cross-section of 10 multinational

robot sellers and 45 countries, accounting for 90% of total robot sales and global GDP.

Information about sellers and their branches is relative to 2021. Information from other

data sources refers to 2019, except for the WIOT database, whose latest available year

is 2014.

Table 1 shows that there is substantial variation in multinational robot sellers’

market entry choices and sales. For instance, Kuka and Yaskawa enter 41 and 27

countries, with an average of 2.80 and 1.44 branches per country, respectively. On the

other hand, ABB and Fanuc serve fewer countries, 17 and 16 respectively, but have a

higher average number of branches, 7.59 and 4.38 respectively. In general, the top 4

multinational robot sellers serve more countries and have higher market shares than

the others, as shown in Online Figure A.5.

Sellers serve different countries in terms of distance from their HQ. There is also

substantial dispersion in their total sales. This heterogeneity will ultimately inform

the structural parameters of the model governing the decisions of robot sellers.
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Table 1. Summary Statistics

Name HQ No. Countries No. Branches Log Dist. from HQ Log Sales

ABB CH 17 7.59 8.39 10.36

Fanuc JP 16 4.38 8.98 8.70

Yaskawa JP 27 1.44 9.04 8.33

Kuka DE 41 2.80 8.48 8.23

Kawasaki JP 12 2.33 8.84 9.41

Epson JP 8 4.00 9.59 9.13

Omron JP 23 2.30 8.97 8.74

Nachi-Fujikoshi JP 16 3.69 8.91 7.61

Staubli CH 31 1.23 8.45 5.70

Comau IT 23 1.74 8.35 5.54

Note: The table shows summary statistics for each of the top 10 multinational robot sellers. HQ is the robot
sellers’ HQ country. No. Countries is the number of countries that robot sellers serve. No. Branches is the average
number of branches that robot sellers operate in the countries they serve. Log Dist. from HQ is the log of the average
distance between the two most populated cities of the robot sellers’ HQ and destination countries in kilometers. Log
Sales is the log of robot sellers’ total revenues in million USD.

Data Validation. While the 10 robot sellers I focus on dominate the industry, there

may be concerns regarding the procedure used to construct their sales network. For

instance, omissions in online listings or misclassification of sales branches could intro-

duce measurement error. To mitigate these concerns, I show that the self-collected

information about global sales networks is consistent with other established sources.

First, there is a 75% correlation between the number of sales branches and robots

used, as reported by the IFR, at the country level. The correlation stays unchanged

even after controlling for market size. Second, there is a 77% correlation between the

number of branches that sellers headquartered in country o open in country d and the

export value of robots from o to d, as reported in the BACI dataset. The correlation

is robust to controlling for origin and destination fixed effects, as well as the distance

between country pairs. This result corroborates the argument made in Section 2.2 that

robot sales are mediated by local branches, with limited scope for direct imports from

producers.

Last, there is a 48% correlation between whether sellers have a branch in a country

and whether they have other subsidiaries in that country (including those unrelated

to robots), as reported in Orbis. The correlation is robust to controlling for seller and

country fixed effects, suggesting that robot sales positively correlate with their other

activities. See Online Appendix D.3 for more details about data validation.
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4 Empirical Facts

This section documents novel facts about the global robot industry.

4.1 Gravity

Fact 1. Robot sellers’ entry choices and sales follow gravity.

I estimate the following equation:

ys(o)d = βLog Distance from HQs(o)d + FEs + FEd + εs(o)d. (1)

ys(o)d is either a binary variable equal to 1 if seller s headquartered in country o has at

least one branch in country d or the market share of seller s in country d (conditional

on entry). Log Distance from HQs(o)d is the log distance between the sellers’ HQ and

destination countries in kilometers. FEs and FEs denote seller and country fixed

effects, respectively. εs(o)d is the error term. Identification comes from within-seller

variation after controlling for any country-level characteristics. Figure 1 shows the

predicted values of equation (1) and the corresponding 95% confidence interval.

Figure 1. The Gravity of Market Entry and Market Shares

Note: The left panel plots the predicted entry probability of robot seller s in country d as a function
of the log distance between the two most populated cities of the seller’s HQ and destination country
in kilometers. The right panel plots the predicted market share of seller s in country d as a function
of the same log distance. All variables are shown after partialling out seller and country fixed effects.
I standardize log distance to have zero mean and unit variance in the sample, and I plot the predicted
values over its [−1, 1] interval. Equation (1) is estimated via OLS. 95% heteroscedasticity-robust
confidence intervals are shown.
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The first column of Online Table B.1 shows that a one-standard-deviation increase

in the log distance from sellers’ HQ reduces the probability of entry by about 14

percentage points (28% relative to the sample average). Similarly, market shares decline

by 4 percentage points (18% relative to the sample average) as shown in the second

column. These findings hold when using a cultural measure of bilateral proximity, as

indicated in the third and fourth columns.

Overall, there is evidence that multinational robot sellers face bilateral frictions at

the extensive and intensive margins that increase with distance from their HQ, which is

consistent with gravity.8 Several factors may underlie these frictions, including home

bias in robot demand, robot sellers’ limited knowledge of the needs of adopters in

distant countries, or coordination costs increasing with distance from the HQ.

To replicate this fact, the model introduced in the next section allows multinational

robot sellers to have different levels of appeal to robot adopters in each market they

enter. This source of heterogeneity will play a crucial role in determining the sales of

each robot seller in a market and how different types of robot sellers respond to policy

interventions.

4.2 Granularity

Fact 2. Robot sales in destination countries are highly concentrated.

I estimate the following equation:

yd = α + βLog Market Sized + εd. (2)

yd is either the total number of robot sellers active in country d or the Herfind-

ahl–Hirschman Index (HHI) in that country.9 Market size of country d is approximated

by its log GDP (in 2010 USD PPP). εd is the error term. The parameter β captures

how yd changes with market size. I standardize log GDP to have zero mean and unit

variance in the sample. Therefore, α indicates the number of robot sellers or HHI in

8Gravity is a strong empirical regularity for trade flows (Head and Mayer, 2014) and MNEs’
activities (Keller and Yeaple, 2013; Antràs and Yeaple, 2014; Gumpert, 2018). It is reassuring that
well-known facts about multinational activity continue to hold in a previously unexplored sector.

9I define HHId =
∑

s∈Sd
s2sd, being ssd the market share of robot seller s in country d and Sd the

set of robot sellers active in country d. This HHI definition implies that each country is a market in
which sellers compete. Although this is reasonable for some countries, it may be inadequate for small
ones belonging to the same economic or geographical areas. In Section 6, I propose a definition of
markets that addresses this issue.
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the average country in terms of size. Figure 2 shows the predicted values of equation

(2) and the corresponding 95% confidence interval.

Figure 2. Concentration and Market Size

Note: The left panel plots the predicted number of robot sellers in country d as a function of the
log GDP of country d. The right panel plots the predicted HHI in country d as a function of the
log GDP of country d. I standardize log GDP to have zero mean and unit variance in the sample,
and I plot the predicted values over its [−1, 1] interval. Equation (2) is estimated via OLS. 95%
heteroscedasticity-robust confidence intervals are shown.

The first two columns of Online Table B.2 show that the average country hosts

about 5 robot sellers, corresponding to an HHI of approximately 34%. It is useful to

resort to the Horizontal Merger Guidelines of the Federal Trade Commission (FTC)

to interpret these numbers. The FTC classifies markets into “unconcentrated” (HHI

< 15%), “moderately concentrated” (15% ≤ HHI ≤ 25%), and “highly concentrated”

(HHI > 25%). The fact that the average country falls in the third category suggests

that robot sellers have market power. As expected, larger markets host more robot

sellers and, therefore, are more competitive, as shown in the last two columns.

To replicate this fact, the model in the next section allows multinational robot

sellers to compete oligopolistically within each local market after paying an entry cost.

5 Model

This section presents a multi-country general equilibrium model. Its main innovation

is embedding competition among oligopolistic multinational robot sellers in the global

economy into an established framework for studying robot adoption.
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5.1 Environment

Setup. The global economy consists of M markets, denoted by o (origin) or d (des-

tination). Each market consists of households and final goods producers. Households

buy final goods and supply either routine (r) or non-routine (n) labor inelastically.

Final goods are produced by perfectly competitive firms using robots and both types

of labor. There is international trade in final goods.

There exists a set of S multinational robot sellers, each denoted by s. Robot sellers

differ in terms of their appeal to final goods producers. This source of heterogeneity

generates gravity in robot sales, as per Section 4.1. To account for granularity, as per

Section 4.2, I let robot sellers compete oligopolistically within the robot industry.

There are two stages. In the first, after observing market entry costs, robot sellers

decide which markets to serve. In the second, conditional on entry, sellers compete to

sell robots to local final goods producers. I denote Ms ⊆ M the set of markets that

s enters and Sd ⊆ S the set of active sellers in a market. The sets Sd and Ms are

determined in equilibrium, whereas S and M are exogenously given.

Robot sellers generate positive profits. Following the approach of Chaney (2008),

I assume that these profits are distributed among households in proportion to their

labor income.

Households’ Preferences. The utility of households i ∈ {r, n} in market d reads:

Cd(i) =

(∑
o∈M

Cod(i)
θ−1
θ

) θ
θ−1

, θ > 1. (3)

Cod(i) denotes the consumption level of final goods originating from o that households

of type i consume in d. The parameter θ is the elasticity of substitution across goods.

The disposable income of households of type i is:

Ed(i) = wd(i)L̄d(i) + sd(i)Π, sd(i) =
wd(i)L̄d(i)∑

d∈M
∑

i∈{n,r}wd(i)L̄d(i)
. (4)

wd(i) denotes the market wage of households of type i and L̄d(i) is their exogenous

labor supply. Households also receive a share sd(i) of robot sellers’ profits, denoted by

Π, proportionally to their labor income. The welfare of households of type i can be
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expressed as:

Wd =
Ed(i)

Pd
. (5)

Pd denotes the consumer price index in market d.

Final Goods Production. To produce final goods, perfectly competitive firms use

robots Rd, routine workers Ld(r), and non-routine workers Ld(n). Rd is a substitute

of Ld(r) and a complement to Ld(n). Final goods are produced using the following

technology:

Yd = AdX
β
dLd(n)1−β, Xd = (Rη

d + Ld(r)
η)

1
η , β ∈ (0, 1), η ∈ (0, 1]. (6)

Ad denotes total factor productivity. The elasticity of substitution between Rd and

Ld(r) is 1/(1 − η). Equation (6) is standard in the robot adoption literature and can

be derived from a task-based model à la Acemoglu and Restrepo (2018), as shown by

Guerreiro et al. (2022). The income share accruing to non-routine labor is 1− β.

The Robot Industry. Multinational robot sellers make two decisions. First, upon

paying an entry cost in terms of local non-routine labor, they choose which markets

to serve. These costs capture, among others, the cost of setting up branches. Second,

conditional on entry, sellers compete to sell an indivisible bundle of generic robots and

integration services to final goods producers. The bundle offered by seller s in market

d is called a “product” and denoted by Rsd.
10 This bundle is considered non-tradable

and produced in the destination market using local non-routine labor.11 Final goods

producers in each market combine robot sellers’ products as:

Rd =

(∑
s∈Sd

φ
1
σ
sdR

σ−1
σ

sd

) σ
σ−1

, σ > 1. (7)

Robot sellers are horizontally and vertically differentiated. Horizontal differentiation

stems, among others, from the fact that sellers have their own brand and may open

10As explained in Section 2.2, robot sales entail a bundle of generic machines, which can potentially
perform a variety of activities, and integration services, which adapt these machines to a specific task.

11In Online Appendix E.2, I extend the model and allow generic robots to be produced in one
market and exported to another, where they are sold bundled with integration services.
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branches in different locations within a market. The elasticity of substitution between

the products that they sell is σ.

The source of vertical differentiation is φsd, a demand shifter reflecting the appeal

of robot sellers to final goods producers. Since demand shifters are seller-market-

specific, robot sellers are allowed to be more attractive in some markets (e.g., the HQ

market) compared to others (e.g., markets distant from the HQ). Thus, φsd flexibly

captures several frictions that are consistent with gravity, such as home bias in robot

demand, the limited knowledge of distant markets by robot sellers, or the presence of

coordination costs that increase with distance from the HQ.

Robot sellers compete oligopolistically à la Bertrand in each market.12 As is stan-

dard in the literature of oligopoly in general equilibrium (Atkeson and Burstein, 2008;

Gaubert and Itskhoki, 2021), robot sellers take into account the effects of their choices

on their market shares and those of their competitors, but not on economy-wide vari-

ables. Robot sellers’ gross and net profits are, respectively:

π̄sd = (rsd − wd(n))Rsd and πsd = π̄sd − wd(n)f. (8)

rsd is the price set by seller s in market d. Aggregate profits are Π =
∑

d∈M
∑

s∈Sd πsd.

International Trade. International trade in final goods is subject to iceberg trade

costs. The cost of delivering one unit of good from origin o to destination d is Pod =

τodpo, where τod ≥ 1 and the triangle inequality holds. I denote by po the producer

price index associated with equation (6).

5.2 Equilibrium

Households. Households choose Cod(i) to maximize utility in equation (3) subject

to the budget constraint given by equation (4). Solving their problem delivers the fol-

lowing expenditure function, which governs bilateral trade flows in final goods between

markets:

PodCod(i) =

(
P 1−θ
od∑

o∈M P 1−θ
od

)
Ed(i). (9)

12The results of the counterfactual exercises are robust to assuming Cournot or monopolistic com-
petition, as discussed in Section 7.2.
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Final Goods Producers. Final goods producers choose Rd, Ld(r), and Ld(n) to

maximize profits. Solving their problem yields the following input demand functions:

Rd =
βῑdpdYd
rd

, Ld(r) =
β(1− ῑd)pdYd

wd(r)
, Ld(n) =

(1− β)pdYd
wd(n)

. (10)

rd is the price of robots in market d, while ῑd is the share of Xη
d produced by robots:

ῑd =
Rη
d

Rη
d + Ld(r)η

. (11)

The producer price index associated with equation (6) is:

pd =
β̄

Ad

[
ῑηdr
−η
d + (1− ῑd)ηwd(r)−η

]−β
η wd(n)1−β, β̄ = β−β(1− β)β−1. (12)

Robot Sellers: Pricing. Equations (7) and (10) imply the following robot demand:

Rsd = φsdr
−σ
sd r

σ−1
d βῑdpdYd. (13)

Sellers set rsd to maximize equation (8) given equation (13). Equilibrium prices are:

rsd =
εsd

εsd − 1
wd(n). (14)

Markups are defined as µsd = εsd/(εsd−1), where εsd is the own-price demand elasticity.

Under Bertrand competition the demand elasticity reads:

εsd = σ − (σ − 1)ssd. (15)

The market share of robot seller s in market d, denoted by ssd, is given by:

ssd =
φsdr

1−σ
sd∑

s∈Sd φsdr
1−σ
sd

. (16)

Equations (14), (15), and (16) describe robot sellers’ pricing strategies. Although this

system does not have a closed-form solution, it implies that robot sellers with higher

φsd have higher market shares, face less elastic demand, and charge higher markups

at a given equilibrium. The robot price index associated with equation (7) can be
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expressed as:

rd =

(∑
s∈Sd

φsdr
1−σ
sd

) 1
1−σ

. (17)

Robot Sellers: Entry. To ensure the uniqueness of the equilibrium of the entry

game, I let robot sellers make entry choices in decreasing order of φsd. Equation (8)

implies that the profits of each seller are decreasing in the number its competitors. Let

j be the last seller who finds it profitable to enter market d, and let j′ be the next

potential entrant. The following break-even condition must hold in each market:

π̄jd ≥ wd(n)f > π̄j′d. (18)

Equation (18) pins down the equilibrium number of robot sellers. Since the realized

demand shifters have a market-specific component, the order in which robot sellers

enter is allowed to differ by market. Still, robot sellers with higher average appeal

enter more markets. In the model, a multinational is a seller present in least two

markets.

Market Clearing Conditions. A market equilibrium consists of a vector of prices

{rd, wd(n), wd(r)} such that households maximize utility, final goods producers and

robot sellers maximize profits, and markets clear. The market clearing conditions to

be fulfilled in each market are:

poYo =
∑
d∈M

∑
i∈{n,r}

(
P 1−θ
od∑

o∈M P 1−θ
od

)
Ed(i), (19)

L̄d(r) =
β(1− ῑd)pdYd

wd(r)
, (20)

L̄d(n) =
(1− β)pdYd
wd(n)

+Rd + |Sd|f. (21)

Equation (19) is the final goods market clearing condition, determining output in each

market. Equations (20) and (21) govern the equilibrium of routine and non-routine

labor markets, respectively. |Sd| is the number of active sellers in market d. Due to

Walras’ law, one market clearing condition is redundant. In practice, I select wd(n) in

one market as the numéraire and discard the corresponding market clearing condition.
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5.3 The Role of Market Structure in the Robot Industry

This section provides insights into how robot sellers’ market entry and pricing choices

affect equilibrium outcomes. I proceed in three steps. First, I consider a closed economy

with symmetric sellers, for which an analytical solution can be derived. Then, I extend

the example to a two-market economy with international trade in final goods. Finally,

I argue that the insights of these restricted models continue to hold in the general case

with heterogeneous sellers and multiple markets. Derivations are in Online Appendix

E.3.

Symmetric Sellers and Closed Economy. Let |M| = 1 and φsd = φ. Variables’

subscripts can be omitted. Sellers’ prices admit the following closed-form solution:

r =
ε

ε− 1
w(n), ε = σ − (σ − 1)s, s =

1

|S|
. (22)

Let η = 1 for simplicity but without loss of generality and w(n) be the numéraire. The

industry-level robot price and final goods price index read:

ř = |S|
1

1−σφ
1

1−σ r, p =
β̄

A
řβ. (23)

Notice that η = 1 implies ř = w(r). Suppose that a new robot seller enters this

economy. Treating the number of sellers as a continuous variable for simplicity, equation

(22) implies that entry reduces incumbents’ prices:

∂r

∂|S|
|S|
r

=
1− σ

ε(ε− 1)|S|
< 0. (24)

Equation (23) implies that entry also reduces the industry-level robot price and final

goods price index:

∂ř

∂|S|
|S|
ř

=
1

1− σ
+

1− σ
ε(ε− 1)|S|

< 0,
∂p

∂|S|
|S|
p

=
β

1− σ
+

β(1− σ)

ε(ε− 1)|S|
< 0. (25)

As a result, robot demand and total production Y increase, and so do wage and income

inequality, defined as w(n)/w(r) and E(n)/E(r) respectively, because w(r) decreases

at the same rate of ř. Figure 3 provides a numerical example, treating |S| as an integer.
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Figure 3. Entry in the Robot Industry - Closed Economy

Note: I simulate an economy consisting of one market initially hosting two symmetric robot sellers.
I set L̄(n) = L̄(r) = 1, A = 0.1, and choose model parameters to match those in Section 6. I set
wH(n) = 1 as the numéraire. I progressively increase the number of robot sellers, recompute the
equilibrium allocation each time, and show the effects of entry on different outcomes.

Symmetric Sellers and Two-Market Economy. While keeping φsd = φ and η =

1, I now let |M| = 2 and denote markets by Home (H) and Foreign (F), respectively.

Let wH(n) be the numéraire. Suppose that new sellers enter Home. Since equations

(22) and (23) continue to hold in the Home market, entry delivers similar effects to

those described in the closed-economy case in that market.

What happens in Foreign? Because markets are connected via international trade

in final goods, a reduction in pH makes all households increase imports from Home as

per equation (9), reducing the total output of Foreign. However, by reducing the cost

of imported goods, entry in Home increases the welfare of all households in Foreign.

Figure 4 provides a numerical example, treating again |S| as an integer. The top panels

show the effects in Home, while the bottom ones the effects in Foreign.
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Figure 4. Entry in the Robot Industry - Open Economy

Note: I simulate an economy consisting of two markets, Home and Foreign, initially hosting two
symmetric robot sellers each. I set L̄d(i) = 1 for all (i, d), Ad = 0.1 for all d, and τod = 1 if o = d and
τod = 1.05 if o 6= d. I choose model parameters to match those in Section 6. I set wH(n) = 1 as the
numéraire. I progressively increase the number of robot sellers in Home, recompute the equilibrium
allocation each time, and show the effects of entry in Home on different outcomes in Home and Foreign.

The General Case. While analytically convenient, sellers’ symmetry is not neces-

sary to generate the predictions in Figures 3 and 4. If robot sellers enter in decreasing

order of φsd, the same patterns persist. The patterns in Figure 4 also apply if |M| > 2,

though the impact of entry in a single market on the rest of the world is more diluted.

Taking stocks, the model predicts that the entry of new sellers in a market boosts

competition, leading to an increase in robot adoption and output in that market. Given

the non-neutrality of robots, these gains are not evenly distributed across workers with

different skill levels. Workers that are complementary to robots benefit from the entry

of new robot sellers, while workers that are substitutes to robots are worse off. When

markets are linked via international trade, entry in one market comes at the expense

of production in other locations.
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6 Quantification

This section discusses estimation, identification, and model fit.

6.1 Empirical Implementation

Market Definition. Bringing the model to the data requires defining the geograph-

ical boundaries of the markets where robot sellers compete. In practice, I aggregate

the original 45 countries into larger markets using a K-means algorithm. The purpose

of the aggregation is twofold. First, it accounts for the fact that robot sellers may use

branches in one country to serve adjacent ones, which may happen especially in small

countries within the same geographical area (e.g., Belgium and the Netherlands). Sec-

ond, it reduces the dimensionality of the robot sellers’ entry problem while preserving

size differences across markets.

The algorithm merges countries with similar latitude and longitude and belonging

to the same continent and creates 12 markets. I choose this number to balance between

interpretable clusters and dimensionality reduction. The merged markets inherit the

average characteristics of the countries belonging to them, and I sum the number of

branches across countries by seller before computing market shares.

Online Figure A.6 shows the clustering procedure outcome. The European conti-

nent is divided into three markets approximately corresponding to eastern countries

(e.g. Hungary and Romania), western-northern countries (e.g., Germany and Swe-

den), and central-southern countries (e.g., Italy and France). Asia is divided into two

markets. The first includes China and India, and the second Japan and South Ko-

rea. South America is also divided into two markets, one including central countries

(e.g., Mexico and Colombia) and one made of central-southern ones (e.g., Brazil and

Argentina). Australia and New Zealand belong to the same market, whereas the US,

Canada and South Africa constitute separate ones.

Exogenous Variables. The model features the following exogenous variables: the

number of routine workers, L̄d(r), the number of non-routine workers, L̄d(n), the pro-

ductivity of the final goods producers, Ad, and bilateral trade costs, τod.

The first three variables come from the WDI database of the World Bank. I measure

L̄d(r) using total employment in agriculture and manufacturing and L̄d(n) using total

employment in the services sector. This approximation is justified by the fact that 99%

23



of the stock of robots in the IFR data are employed in agriculture and manufacturing.

No industrial robots are adopted in services, implying that workers in that sector

cannot be replaced by robots. I compute Ad using the weighted average of labor

productivity in agriculture, manufacturing, and services, where the weights are given

by the employment share of each sector. Trade costs between country pairs, τod, come

from the ESCAP World Bank database.

6.2 Estimation Procedure and Identification

Households’ choices depend on the trade elasticity, 1 − θ. The choices of final goods

producers depend on the elasticity of substitution between robots and routine workers,

1/(1−η), and the production share of non-routine workers, 1−β. Robot sellers’ choices

are governed by the demand shifters, φsd, the elasticity of substitution between their

products, σ, and market-level entry costs, f . I calibrate θ, η, and β in a standard way

from previous literature and the data. I use a simulated method of moments (SMM)

algorithm to estimate the φsd, σ, and f , which are new in the literature.

Calibration. As is standard in the trade literature, I set θ = 5, implying a trade

elasticity of −4 (Head and Mayer, 2014). Following the robot adoption literature

(Acemoglu and Restrepo, 2018; Guerreiro et al., 2022), I set η = 1, implying perfect

substitution between robots and routine workers. As a result, routine wages are equal-

ized to local robot prices, determined by competition among robot sellers. I calibrate

β to match the average value-added labor share of agriculture and manufacturing in

the sample, which yields β = 0.34.

Simulated Method of Moments. Robot sellers draw φsd from the following log-

normal distribution, with mean and variance to be estimated:

φsd = exp{φi + κLog Distance from HQsd + ζusd}, i ∈ {Top 4,Rest}. (26)

The demand shifter of robot seller s in market d is a function of its average appeal, the

physical distance of market d from its HQ, and an i.i.d. normally distributed random

shock with zero mean and unit variance. To minimize the computational burden of

the SMM procedure, instead of estimating the average appeal of each robot seller,

I let the top 4 sellers in the data (ABB, Kuka, Fanuc, and Yaskawa) draw demand
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shifters from a distribution with a potentially higher mean than the others, i.e., I

expect φ̂Top 4 ≥ φ̂Rest. Consistently with the frictions discussed in Section 4.1, I expect

κ̂ < 0. The vector of parameters to be estimated is Θ = {φTop 4, φRest, κ, ζ, σ, f}.
The SMM procedure consists of a loop with three nests: an outer loop searching

over the vector of parameters Θ, a middle loop solving the model general equilibrium

allocation, and an inner loop finding the solution to the robot sellers’ problem. For each

candidate vector Θ, I draw B matrices of φsd from equation (26),13 solve the model at

each draw, and compute the model-implied moments m(Θ) as an average across draws.

Then, I match simulated moments to the data ones m̄ to minimize the SMM objective

function L(Θ) = (m(Θ)− m̄)′W (m(Θ)− m̄), being W a weighting matrix.

To solve the model, I extend the solution algorithm developed by Gaubert and It-

skhoki (2021) for a two-country economy to a multi-country one. This requires guessing

wages for each market, solving the robot sellers’ problem in each of them, and iter-

ating until a fixed point is reached. Convergence of the inner loop entails a discrete

search over the number of sellers, as per equation (18), and a non-linear search over

their prices in equation (14). Convergence of the middle loop is achieved by a linear

inversion of equations (19), (20), and (21), which helps to reduce the computational

burden of the search. See Online Appendix F for more details.

Identification. I target eight data moments to estimate six parameters. The selected

moments are informative about robot sellers’ entry choices, their sales, strength of

competition, and robot adoption. I assign equal weight to each of them.

Although the structural parameters are jointly estimated, each of them is informed

in an intuitive way by distinct targeted moments. The parameter φTop 4 is used to

match the average log number of markets entered by the top 4 robot sellers and their

average market shares, whereas φRest helps matching those of the other robot sellers.

All else equal, higher values of both parameters translate into more entered markets and

higher market shares. The parameter κ is chosen to replicate the average log distance

between the robot sellers’ HQ and the markets they enter, while ζ aids matching the

standard deviation of the distribution of market shares across robot sellers. A higher

κ reduces robot sellers’ appeal in more distant markets, whereas a higher ζ makes the

realized demand shifters more sensitive to i.i.d. shocks and less to fundamentals.

I choose σ to match the average log stock of robots in the data. Identification rests

13I use B = 200. I draw normally distributed i.i.d. shocks usd using Sobol sequences to cover the
support of the normal distribution more efficiently than if points were randomly drawn (Train, 2009).
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on the fact that all else equal, higher σ translates into lower markups, lower prices,

and a higher number of robots adopted.14 Finally, f is used to match the average log

number of robot sellers per market. A higher f reduces the number of entrants.

6.3 Estimation Results

Model Parameters. Table 2 reports the calibrated and estimated parameter values.

Table 2. Summary of the Model Parameters

Parameter Description Value 95% CI Source/Target

Calibrated

θ Trade Elasticity 5.00 Head and Mayer (2014)

β Income Share of Xd 0.34 WDI

η Ld(r) vs Rd Elasticity 1.00 Guerreiro et al. (2022)

Estimated

φH Average Demand Shifters (Top 4) 3.26 [2.39, 4.35] Mean Log Markets and Mkt Shares (Top 4)

φL Average Demand Shifters (Rest) 2.03 [1.43, 3.10] Mean Log Markets and Mkt Shares (Rest)

κ Elasticity to Dist. from HQ -0.91 [-1.13, -0.86] Mean Log Dist. from HQ

ζ Demand Shifters St. Dev. 1.81 [1.20, 2.11] St. Dev. Market Shares

f Market-Level Entry Costs 1.75 [1.23, 2.53] Mean Log No. of Sellers by Market

σ Elasticity of Substitution b/ween Rsd 3.84 [2.88, 6.43] Mean Log Stock of Robots

Note: The table contains the values of the parameters of the model. The top panel reports the value of the parameters calibrated without

solving the model. The bottom panel contains those estimated by the SMM procedure. 95% bootstrap confidence intervals (CI) in parenthesis are

computed using the method of Bernard et al. (2022), which I describe in Online Appendix F.2.

As expected, the top 4 robot sellers have a higher average appeal than the others,

though the 95% confidence intervals around the two estimates partially overlap. Appeal

declines with distance from the seller’s HQ, consistent with gravity in Section 4.1. A

value of κ close to minus one is in line with estimates from the international trade

literature on the elasticity of bilateral trade flows to distance (Head and Mayer, 2014).

On average, entry costs amount to about 20% of robot sellers’ revenues. Positive

entry costs align with the fact described in Section 4.2 that only a subset of robot sellers

are active in each market. The estimated value of σ implies a markup of approximately

42% at the average sample market shares, with a standard deviation of 17%. This

number falls within the range provided by the literature in other industries (De Loecker

et al., 2020).

14An interesting direction for future research is to compile firm- and product-level data on robot
prices and quantities and exploit exogenous variation to estimate this elasticity.

26



Model Fit. Table 3 shows that the model accurately matches the targeted moments.

Table 3. Model Fit on Targeted Moments

Description Data Moments Simulated Moments

Mean Log No. of Markets (Top 4) 2.29 2.32

Mean Log No. of Markets (Rest) 2.07 2.12

Mean Market Share (Top 4) 0.17 0.18

Mean Market Share (Rest) 0.12 0.09

Mean Log Dist. from HQ 9.01 9.07

St. Dev. Market Shares 0.07 0.06

Mean Log No. of Sellers by Market 1.99 1.90

Mean Log Stock of Robots 10.30 10.30

Note: The table reports the data moments targeted by the SMM procedure and the simulated

ones implied by the estimated model.

The model also replicates moments not targeted during the SMM procedure, as

shown in Table 4. The rows show seller or market-level outcomes, whereas the columns

report their values in the data and as implied by the model. As shown by the last

column, the null hypothesis of equal means cannot be rejected for any outcome.

Table 4. Model Fit on Non-Targeted Moments

Description Data Moments Simulated Moments P-value

Log Saless 5.87 6.33 0.48

HHId 0.33 0.40 0.28

Log GDP per capitad 10.0 11.4 0.50

Log Export Valuesd 10.6 11.2 0.76

Note: Each row contains a seller (s) or market-level (d) outcome. The first column reports

average values in the data. The second column shows model-implied average values for each

outcome. Averages are computed across sellers or markets. The last column is the p-value

associated with the null hypothesis that data and model-implied moments have equal means.

Finally, the model replicates the dispersion in robot prices across markets observed

in the data. The correlation between the model-implied robot prices calculated using

equation (17) and the import prices (unit values) obtained from the BACII dataset

equals 84%. Overall, these results support the reliability of the model in capturing

salient features of the robot industry and the global economy.
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7 A Tax on Robot Adoption

This section discusses the effects of policies aimed at protecting workers displaced by

robots.

7.1 Design and Implementation

The Debate. Concerns about workers’ displacement have sparked discussions about

regulating robots (Shiller, 2017; Acemoglu and Johnson, 2023). One widely debated

proposal is a tax on robot adoption. This policy was discussed in 2017 by the EU

Parliament as part of broader reforms to mitigate the adverse effects of automation on

routine workers.15 This idea has since sparked research about the taxation of robots

(Guerreiro et al., 2022; Thuemmel, 2022; Costinot and Werning, 2023).16

The ongoing debate focuses on how a robot tax affects robot-adopting firms and the

labor market. Responses from the supply side are largely overlooked. In this section, I

contribute to this debate by evaluating how multinational robot sellers would respond

to a robot tax and how their responses would shape its outcomes.

Introducing a Tax in the Model. In line with previous literature, I consider the

introduction a value-added robot tax paid by robot adopters. Let td ∈ (0, 1) if d ∈ EU

and 0 otherwise. The new price of robots can be expressed as:

rd =
βῑdpdYd

(1 + td)Rd

. (27)

Wage equalization between robots and routine workers requires wd(r) = (1 + td)rd.

Equation (13) can be modified as:

Rsd = φsdr
−σ
sd r

σ−1
d

βῑdpdYd
1 + td

. (28)

A tax reduces the quantity of robots that final users demand, shrinking the effective

size of local robot markets. A tax generates revenues TEU =
∑

d∈M 1{d ∈ EU}tdrdRd,

which are distributed as a lump-sum payment to EU households.

15See https://www.europarl.europa.eu/doceo/document/JURI-PR-582443_EN.pdf?redirect

for the full proposal of the Committee on Legal Affairs of the European Parliament.
16This literature shows that when lump-sum transfers are unfeasible (e.g., because the worker type

is unobserved), it is optimal to tax robots to redistribute income towards routine workers.
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Counterfactual Scenarios. I consider two counterfactual scenarios. In the first, I

assume that robot sellers are unable to adjust their entry choices and markups once

the tax is implemented. This scenario mimics the standard approach in the literature

(Humlum, 2021; Guerreiro et al., 2022; Thuemmel, 2022; Costinot and Werning, 2023;

Beraja and Zorzi, 2025).

In the second scenario, I allow robot sellers to change the set of markets they serve

and the markups they charge in each market. All else equal, responses along these

margins may amplify or attenuate the effects of a tax. On the one hand, if robot prices

strongly respond to local competition, robot sellers’ market entry and exit choices may

magnify the effects of taxing robot adopters. On the other, robot sellers’ ability to

change variable markups, implying imperfect pass-through, may generate attenuation.

I consider a 5% robot tax as the baseline. This tax rate aligns with the short-run

optimal tax estimated for the US by Guerreiro et al. (2022). Online Appendix F.3

describes the algorithm used to perform the counterfactuals.

7.2 Results

The Effects in the EU. Table 5 shows the effects of a 5% EU-wide value-added tax

on robot adoption in the average EU market. All outcomes are presented as percentage

changes relative to the baseline scenario without the tax.

In the first scenario, the number of robot sellers and their markups remain un-

changed by design. Final goods producers experience a 5.2% increase in robot prices,

leading to a 4.8% reduction in robot demand. Accordingly, production costs rise by

1.9% and output decreases by 1.7%. Consumer prices increase by 0.6%. Income in-

equality is reduced by 4.7%, with routine households experiencing a 3.3% welfare gain

and non-routine households experiencing a 1.5% welfare loss due to their different

substitutability with robots.

In the second scenario, the tax shrinks the size of the robot market and leads to a

2.2% reduction in the number of robot sellers. Exit induces an endogenous reallocation

of market shares among incumbents, generating a 0.2% increase in the average markup,

denoted as µ̄d = 1
|Sd|
∑

s∈Sd µsd. This increase puts upward pressure on the other prices.

Robot prices increase by 5.1% more than in the first scenario, generating a 16% stronger

reduction in robot adoption. Producer prices increase by 1.3% more than in the first

scenario, while output decreases by 32.1% more. Consumer prices also rise by 36.7%

more than in the first case. Income inequality is reduced by 6.9% more, with 11.2%
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Table 5. The Effects of an EU-wide Robot Tax in the EU

Outcome Variable First Scenario Second Scenario % Change

Panel A: Robot Sellers

Number of Sellers Sd 0.000% -2.287%

Markups µ̄d 0.000% 0.239%

Panel B: Final Goods Producers

Robot Price rd 5.247% 5.519% 5.184%

Robot Stock Rd -4.892% -5.675% 16.006%

Producer Price Index pd 1.921% 1.947% 1.353%

Output Yd -1.787% -2.362% 32.177%

Panel C: Households

Consumer Price Index Pd 0.669% 0.915% 36.771%

Welfare Routine Wd(r) 3.345% 2.968% -11.271%

Welfare Non-Routine Wd(n) -1.577% -2.290% 45.212%

Income Inequality Ed(n)/Ed(r) -4.763% -5.094% 6.949%

Note: The table summarizes the effects of a 5% EU-wide value-added tax on robot adoption in the average EU market.

Panel A shows the effects on robot sellers. Panel B shows the effects on final goods producers. Panel C shows the effects

on households. In the first scenario, robot sellers are unable to adjust their entry choices and markups once the tax is

implemented. In the second, they can change the set of markets served and the markups charged in each market. In

the first two columns, outcomes changes are relative to the initial equilibrium without tax. The last column displays the

percentage change in each outcome between the second and first scenario.

smaller welfare gains for routine households and 45.2% larger welfare losses among

non-routine households.

Comparing outcome changes between scenarios suggests that ignoring multinational

robot sellers’ responses leads to underestimating the aggregate and distributional effects

of a tax in the average EU market by about 20%. In terms of policy implications, the

results suggest that a welfare-maximizing European planner should set lower robot

taxes when robot sellers endogenously respond to it.

The Effects Outside the EU. Since markets are linked via international trade, a

tax also produces effects outside the EU. Table 6 shows the effects of a 5% EU-wide

value-added tax on robot adoption in the average non-EU market.

An EU-wide robot tax makes EU final goods more expensive, leading EU and non-

EU households to shift their expenditures towards non-EU goods. This demand shift

prompts non-EU final goods producers to increase output by using more robots. In

the first scenario, the average non-EU market sees a 0.8% rise in both robot adoption
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and output. The consumer price index goes up by 0.6%, resulting in a welfare loss of

0.4% for routine and non-routine households.

In the second scenario, although there is some entry into non-EU markets, the exit

of robot sellers from the EU results in a 26.4% stronger increase in consumer prices

outside the EU. This leads to welfare losses for non-EU households that are twice as

large compared to the first scenario. Therefore, ignoring multinational robot sellers’

responses to a local tax leads to underestimating the welfare effects of a tax also beyond

the domestic border.

Table 6. The Effects of an EU-wide Robot Tax Outside the EU

Outcome Variable First Scenario Second Scenario % Change

Panel A: Robot Sellers

Number of Sellers Sd 0.000% 0.050%

Markups µ̄d 0.000% -0.003%

Panel B: Final Goods Producers

Robot Stock Rd 0.837% 0.735% -12.186%

Output Yd 0.835% 0.717% -14.132%

Panel C: Households

Consumer Price Index Pd 0.643% 0.813% 26.439%

Welfare Routine Wd(r) -0.418% -0.979% 133.971%

Welfare Non-Routine Wd(n) -0.418% -0.979% 133.652%

Income Inequality Ed(n)/Ed(r) 0.000% 0.000%

Note: The table summarizes the effects of a 5% EU-wide value-added tax on robot adoption in the average non-EU

market. Panel A shows the effects on robot sellers. Panel B shows the effects on final goods producers. Panel C shows

the effects on households. In the first scenario, robot sellers are unable to adjust their entry choices and markups once the

tax is implemented. In the second, they can change the set of markets served and the markups charged in each market.

In the first two columns, outcomes changes are relative to the initial equilibrium without tax. The last column displays

the percentage change in each outcome between the second and first scenario.

Robustness. Online Tables B.3 and B.4 show that the results are robust to using

a 2% or 7% tax rate. As the tax rate increases (decreases), all changes in outcomes

relative to an equilibrium without taxes are amplified (reduced). Online Tables B.5

and B.6 show that the direction of the second-scenario effects is robust to assuming

Cournot or monopolistic competition.

7.3 Further Discussion

The Role of Gravity. An implication of gravity is that the marginal entrant in

each country is the one originating from the furthest location. Therefore, shocks in
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any given market disproportionately affect the sales of foreign sellers. Since an EU-

wide robot tax reduces market access in the EU, higher exit rates among Asian robot

sellers are expected. Online Table B.7 provides evidence for this uneven effect. In an

equilibrium with a tax, the average Asian seller serves 1.6% fewer EU markets than

in an equilibrium without. By contrast, the average EU seller experiences a lower

reduction in the number of EU markets served, equal to 0.7%. Therefore, robot sellers’

heterogeneous responses effectively make a robot tax a protectionist measure from the

perspective of the EU.

The Role of International Trade in Final Goods. Online Tables B.8 and B.9

compare the second-scenario outcomes in Tables 5 and 6 with those obtained in a

counterfactual economy where bilateral trade costs on final goods are 5% lower. Both

tables reveal a complementarity between trade costs and robot sellers’ responses: the

same robot tax produces stronger responses from the supply side when trade costs are

lower. This happens because lower trade costs lead to higher sensitivity of households’

import shares to changes in prices in equation (9).17 Consequently, the reallocation of

demand for final goods across markets is amplified, and so is the reallocation of robot

supply.

Unilateral Versus Multilateral Taxation. Online Table B.10 compares the out-

comes in Tables 5 and 6 with those resulting from a worldwide 5% value-added tax on

robot adoption. Compared to a unilateral one, a worldwide tax reduces the number of

active robot sellers and output everywhere. All routine households experience welfare

gains and all non-routine households face welfare losses. In this sense, a multilateral

tax may eliminate the incentives for governments to retaliate against or take advantage

of unilateral taxes introduced in foreign jurisdictions.

The Distribution of Outcomes Changes within the EU and non-EU. Tables

5 and 6 refer to the average EU and non-EU markets. I inspect the distribution of

the outcome changes between markets within the EU and non-EU areas in Online

Table B.11. Although there is variation in the magnitude of the changes, their sign is

consistent across the different moments of the distribution within each area.

17This effect should be understood as a local one around the observed trade costs. In the limit case
of free trade, final goods prices equalize and households’ expenditure shares become fixed.
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A Subsidy on Robot Adoption. Following a similar reasoning as for the tax, I

examine the implementation of an EU-wide 5% discount on the price of robots paid by

final good producers funded by taxing EU households. Online Table B.12 shows the

effects in the average EU and non-EU markets, allowing robot sellers to endogenously

adjust entry choices and markups once the tax is introduced. As one may expect, all

outcomes exhibit the opposite direction compared to Tables 5 and 6.

Additional Margins of Supply-Side Responses. Besides market entry and pric-

ing choices, multinational robot sellers could respond to regulation along additional

margins, such as product innovation. If a tax reduces innovation incentives, the con-

traction in robot supply may be even stronger than in the baseline model, further mag-

nifying outcome differences between models with and without supply-side responses.

The model can be extended to include multi-product robot sellers. For instance,

sellers may offer factory-gate robots differentiated in terms of speed and precision. If

robot sellers specialize in different products, markets become more segmented, leading

to greater concentration. Since robot prices are more sensitive to changes in the number

of sellers when there are only a few incumbents (see Figure 3), the exit of robot sellers

would cause a stronger increase in markups and prices than in the baseline model.

Therefore, the results presented thus far should be understood as a lower bound to

those implied by a richer model that includes additional margins of responses from the

supply side.

8 Competition Policy

This section discusses the effects of improving the efficiency of the robot industry.

Addressing Frictions in the Robot Industry. Recent literature has highlighted

that, even if confined to specific sectors, market power can have detrimental effects for

the economy as a whole (Edmond et al., 2015; De Loecker et al., 2020; Autor et al.,

2020; Edmond et al., 2023). In the model presented in Section 5, robot sellers’ market

power implies a lower level of output than in a competitive economy. In this section,

I investigate the effects of policies that mitigate distortions arising from market power

by boosting competition among robot sellers.
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Counterfactual Scenarios. I evaluate two counterfactual scenarios. In the first,

while holding the total number of robot sellers constant, I simulate the effects of a

25% reduction in the entry costs that robot sellers must pay to serve each market. In

the second, while holding entry costs fixed, I simulate the arrival of a new top robot

seller with HQ in China, the largest country in the world in terms of robot adoption.

In each scenario, I study the implications for competition in the robot industry, final

goods producers, and households. Details about the solution algorithm are in Online

Appendix F.4.

Results. Table 7 shows the results in the average market. I present all outcomes as

percentage changes relative to the baseline model equilibrium. Boosting competition

among robot sellers reduces markups and prices in all markets. In the first scenario,

routine households experience a welfare loss, whereas non-routine households face a

welfare increase. In the second counterfactual scenario, where pro-competitive effects

are stronger, both types of households are better off. Still, income inequality increases

in both scenarios because non-routine workers systematically experience dispropor-

tionally larger gains. These findings suggest that distortions in the robot industry are

potentially large but their cost is not evenly borne.

Table 7. Boosting Competition in the Robot Industry

Outcome Variable Lower Market Entry Costs New Robot Seller

Panel A: Robot Sellers

Number of Sellers Sd 5.111% 5.271%

Markups µ̄d -0.324% -0.395%

Panel B: Final Goods Producers

Robot Price rd -0.147% -16.366%

Producer Price Index pd -0.014% -15.980%

Output Yd 0.068% 17.746%

Panel C: Households

Consumer Price Index Pd -0.001% -18.489%

Welfare Routine Wd(r) -0.142% 1.576%

Welfare Non-Routine Wd(n) 0.059% 5.228%

Income Inequality Ed(n)/Ed(r) 0.204% 3.310%

Note: The table summarizes the effects of promoting competition among robot sellers in the average market. The first

column shows the results of a 25% worldwide reduction in market-level entry costs. The second column shows the results of

the addition of a new robot seller to the set of potential incumbents. Panel A shows the effects on robot sellers. Panel B

shows the effects on final goods producers. Panel C shows the effects on households. All outcome changes are relative to the

initial equilibrium with the estimated entry costs and actual number of potential incumbents, respectively.
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Implications for Optimal Policy. The results presented thus far suggest that a

planner that seeks to maximize production efficiency but also protect workers displaced

by robots should promote competition among robot sellers and redistribute income

towards routine workers. If lump-sum transfers are unfeasible, taxes on robot adoption

could be considered.

9 Conclusions

Automation technology enhances productivity but generates job displacement con-

cerns, leading to debates about policies to regulate its adoption. The current debate

focuses on the responses of technology adopters and their implications for the labor

market. In this paper, I study supply-side adjustments and their role in shaping the

outcomes of policy changes. I focus on the global market of industrial robots, an

industry where a few multinational enterprises dominate production and sales.

I collect new data on the characteristics and global sales of the leading multinational

robot sellers worldwide. I then develop and estimate a quantitative multi-country

general equilibrium model that embeds oligopolistic competition among multinational

robot sellers into a standard framework for analyzing the labor market effects of robot

adoption. Using the model, I show that multinational robot sellers’ market entry

and pricing responses to policies targeting robot adoption amplify the aggregate and

distributional effects of these interventions. To the extent that markets are linked

via international trade and multinational activity, the effects of local policies transmit

beyond local borders.

Overall, this paper conveys two messages. First, any regulation targeting the dif-

fusion of robots should take into account not just the responses of robot adopters but

also consider those of robot sellers. Second, policymakers of different countries may

need to coordinate their efforts to avoid unintended ripple effects.

Properly adapted, the theoretical framework developed in this paper can be used

to investigate the role of market power in other segments of the automation industry

and other global input markets.
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Online Appendix

Global Robots

Fabrizio Leone

A Figures

Online Figure A.1. Market Shares in the Global Robot Industry

Note: The figure shows market shares in 2021. Since Orbis does not provide a breakdown of sales
by sector of activity, I calculated the market shares using the total turnover of the 26 robot sellers
registered with the IFR across all their sectors of activity. However, since automation provision is the
primary activity of these firms, their total sales are an accurate proxy for their size in the industry.

Online Figure A.2. Total Turnover of Top 4 Producers by Sector

Note: The figure compares the total revenues (in billion USD in 2021) of the top 4 robot sellers with
the total revenues of the top 4 sellers in the automotive, smartphone, semiconductor, and computer
industries in terms of revenues in Orbis. To compile these lists, I used Orbis in the following way:
First, I identified the industry code associated with each of the four industries under consideration.
Second, I retrieved all firms that reported one of these four codes as their main sector of activity.
Third, within each sector, I ranked firms based on their total revenues and selected the top 4.
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Online Figure A.3. Examples of Websites with Information about
Branches

Example 1: A Branch of Kuka

Example 2: A Branch of ABB

Note: The figure shows an example of a website containing information about robot sales branches.
The typical information displayed is the branch name and address, as in Example 1. Sometimes,
additional information like the telephone number, web address, list of countries served, and product
lines are reported, as in Example 2.
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Online Figure A.4. The Global Footprint of Robot Sellers

Note: The figure shots the number of robot sellers’ branches per country. China, Germany, Japan,
South Korea, and the US are the five largest destination countries.

Online Figure A.5. Differences between Robot Sellers

Note: The left panel of the figure shows the average number of markets served by the top 4 multina-
tional robot sellers versus the other 6 sellers, labeled “Rest”. The right panel of the figure shows the
average market shares of the two groups.
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Online Figure A.6. Market Definition

Note: The figure shows the definition of 12 markets used in the quantitative model. Markets are
aggregated using a K-means algorithm that merges countries with similar latitude and longitude and
belonging to the same continent. The resulting markets inherit the average of the characteristics of
the countries belonging to them.

B Tables

Online Table B.1. Gravity in Market Entry and Sales

Dependent Variables: Entrys(o)d Market Shares(o)d Entrys(o)d Market Shares(o)d
(1) (2) (3) (4)

Log Distance from HQs(o)d -0.14∗∗∗ -0.04∗∗∗

(0.03) (0.010)
Cultural Distance from HQs(o)d 0.05∗ 0.03∗∗∗

(0.03) (0.010)
Seller FE Yes Yes Yes Yes
Country FE Yes Yes Yes Yes

Observations 450 214 450 214
Estimator OLS OLS OLS OLS

Note: An observation is a robot seller-destination country pair. In the first and third columns, the dependent
variable is a binary indicator equal to 1 if seller s from HQ o enters in country d. In the second and fourth columns,
the dependent variable is the market share of seller s from HQ o in country d. Log Distance from HQs(o)d

is the log of the distance between the two most populated cities of the seller HQ and destination country in
kilometers. Cultural Distance from HQs(o)d is a continuous index of linguistic proximity between the seller HQ
and the destination country. Both variables are standardized to have zero mean and unit variance in the sample.
Heteroscedasticity-robust standard errors in parenthesis. Significance levels: *** 0.01, ** 0.05, * 0.1.
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Online Table B.2. Concentration and Market Size

Dependent Variables: Number of Sellersd HHId Number of Sellersd HHId
(1) (2) (3) (4)

Intercept 4.8∗∗∗ 0.34∗∗∗ 4.8∗∗∗ 0.34∗∗∗

(0.34) (0.02) (0.21) (0.02)
Log GDP per capitad 1.0∗∗∗ -0.02

(0.23) (0.02)
Log Populationd 2.2∗∗∗ -0.09∗∗∗

(0.24) (0.02)

Observations 45 45 45 45
Estimator OLS OLS OLS OLS

Note: An observation is a destination country. In the first and third columns, the dependent
variable is the number of robot sellers active in country d. In the second and fourth columns, the
dependent variable is the HHI in country d. Log GDP per capitad is the log GDP per capita in
country d (in 2010 USD PPP), whereas Log Populationd is the log total population of country d. I
standardize both variables to have zero mean and unit variance in the sample. Heteroscedasticity-
robust standard errors in parenthesis. Significance levels: *** 0.01, ** 0.05, * 0.1.

Online Table B.3. The Effects of an EU-wide Robot Tax in the EU - Al-
ternative Tax Rates

Outcome Variable Tax = 2% Tax = 5% Tax = 7%
Panel A: Robot Sellers
Number of Sellers Sd -1.895% -2.287% -1.308%
Markups µ̄d 0.172% 0.239% 0.098%
Panel B: Final Goods Producers
Robot Price rd 2.284% 5.519% 7.731%
Robot Stock Rd -2.459% -5.675% -7.585%
Producer Price Index pd 0.798% 1.947% 2.854%
Output Yd -1.019% -2.362% -3.190%
Panel C: Households
Consumer Price Index Pd 0.374% 0.915% 1.424%
Welfare Routine Wd(r) 1.261% 2.968% 3.678%
Welfare Non-Routine Wd(n) -0.967% -2.290% -3.379%
Income Inequality Ed(n)/Ed(r) -2.193% -5.094% -6.793%

Note: The table summarizes the effects of different EU-wide value-added taxes on robot adoption in the
average EU market. Panel A shows the effects on robot sellers. Panel B shows the effects on final goods
producers. Panel C shows the effects on households. In the first scenario, robot sellers are unable to adjust
their entry choices and markups once the tax is implemented. In the second, they can change the set of
markets served and the markups charged in each market. In the first two columns, outcomes changes are
relative to the initial equilibrium without tax. The last column displays the percentage change in each
outcome between the second and first scenario.
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Online Table B.4. The Effects of an EU-wide Robot Tax Outside the EU
- Alternative Tax Rates

Outcome Variable Tax = 2% Tax = 5% Tax = 7%
Panel A: Robot Sellers
Number of Sellers Sd 0.097% 0.050% 0.033%
Markups µ̄d -0.006% -0.003% 0.000%
Panel B: Final Goods Producers
Robot Price rd 0.473% 1.219% 1.661%
Robot Stock Rd 0.296% 0.735% 1.009%
Producer Price Index pd 0.476% 1.218% 1.660%
Output Yd 0.286% 0.717% 0.986%
Panel C: Households
Consumer Price Index Pd 0.311% 0.813% 1.086%
Welfare Routine Wd(r) -0.369% -0.978% -1.254%
Welfare Non-Routine Wd(n) -0.365% -0.979% -1.256%
Income Inequality Ed(n)/Ed(r) 0.004% -0.000% -0.002%

Note: The table summarizes the effects of different EU-wide value-added taxes on robot adoption in the
average non-EU market. Panel A shows the effects on robot sellers. Panel B shows the effects on final
goods producers. Panel C shows the effects on households. In the first scenario, robot sellers are unable to
adjust their entry choices and markups once the tax is implemented. In the second, they can change the
set of markets served and the markups charged in each market. In the first two columns, outcomes changes
are relative to the initial equilibrium without tax. The last column displays the percentage change in each
outcome between the second and first scenario.

Online Table B.5. The Effects of an EU-wide Robot Tax in the EU - Al-
ternative Market Structure

Outcome Variable Bertrand Cournot Monopolistic Competition
Panel A: Robot Sellers
Number of Sellers Sd -2.287% -0.178% -3.318%
Markups µ̄d 0.239% 0.030% 0.823%
Panel B: Final Goods Producers
Robot Price rd 5.519% 5.289% 5.117%
Producer Price Index pd 1.947% 1.958% 1.445%
Output Yd -2.362% -2.068% -0.286%
Panel C: Households
Consumer Price Index Pd 0.915% 0.986% 0.824%
Welfare Routine Wd(r) 2.968% 2.563% 2.818%
Welfare Non-Routine Wd(n) -2.290% -2.327% -2.598%
Income Inequality Ed(n)/Ed(r) -5.094% -4.768% -5.261%

Note: The table summarizes the effects of a 5% EU-wide value-added tax on robot adoption in the average EU market
under alternative market structure assumptions (Bertrand competition, Cournot competition, and monopolistic competition).
Panel A shows the effects on robot sellers. Panel B shows the effects on final goods producers. Panel C shows the effects on
households. In the first scenario, robot sellers are unable to adjust their entry choices and markups once the tax is implemented.
In the second, they can change the set of markets served and the markups charged in each market. In the first two columns,
outcomes changes are relative to the initial equilibrium without tax. The last column displays the percentage change in each
outcome between the second and first scenario.
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Online Table B.6. The Effects of an EU-wide Robot Tax Outside the EU
- Alternative Market Structure

Outcome Variable Bertrand Cournot Monopolistic Competition
Panel A: Robot Sellers
Number of Sellers Sd 0.050% 0.006% 0.078%
Markups µ̄d -0.003% -0.001% -0.015%
Panel B: Final Goods Producers
Robot Price rd 1.219% 1.262% 0.949%
Producer Price Index pd 1.218% 1.262% 0.957%
Output Yd 0.717% 0.042% 2.238%
Panel C: Households
Consumer Price Index Pd 0.813% 0.737% 0.589%
Welfare Routine Wd(r) -0.978% -0.650% -0.573%
Welfare Non-Routine Wd(n) -0.979% -0.649% -0.562%
Income Inequality Ed(n)/Ed(r) -0.000% 0.000% 0.012%

Note: The table summarizes the effects of a 5% EU-wide value-added tax on robot adoption in the average non-EU market
under alternative market structure assumptions (Bertrand competition, Cournot competition, and monopolistic competition).
Panel A shows the effects on robot sellers. Panel B shows the effects on final goods producers. Panel C shows the effects on
households. In the first scenario, robot sellers are unable to adjust their entry choices and markups once the tax is implemented.
In the second, they can change the set of markets served and the markups charged in each market. In the first two columns,
outcomes changes are relative to the initial equilibrium without tax. The last column displays the percentage change in each
outcome between the second and first scenario.

Online Table B.7. The Effects of an EU-wide
Robot Tax on Different Sellers

HQ Change in the Number of EU Markets

Europe -0.735%

Asia -1.667%

Note: The table summarizes the effects of a 5% EU-wide value-
added tax on robot adoption in the average non-EU market for
sellers headquartered in different areas. All outcomes changes are
relative to the initial equilibrium without tax.
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Online Table B.8. The Complementarity Between Market Structure and
Trade Costs - Average EU Market

Outcome Variable Actual Trade Costs Low Trade Costs % Change

Panel A: Robot Sellers

Number of Sellers Sd -2.287% -2.763% 20.813%

Markups µ̄d 0.239% 0.375% 56.904%

Panel B: Final Goods Producers

Robot Price rd 5.519% 5.547% 0.507%

Robot Stock Rd -5.675% -6.478% 14.150%

Producer Price Index pd 1.947% 1.945% -0.103%

Output Yd -2.362% -2.492% 5.504%

Panel C: Households

Consumer Price Index Pd 0.915% 0.888% -2.951%

Welfare Routine Wd(r) 2.968% 3.072% 3.504%

Welfare Non-Routine Wd(n) -2.290% -2.232% -2.533%

Income Inequality Ed(n)/Ed(r) -5.094% -5.134% 0.785%

Note: The table summarizes the effects of a 5% EU-wide value-added tax on robot adoption in the average EU market. Panel A
shows the effects on robot sellers. Panel B shows the effects on final goods producers. Panel C shows the effects on households.
I compare two scenarios. In the first, I leave trade costs at their level observed in the data. In the second, trade costs between
all country pairs are reduced by 5%. In the first two columns, outcomes changes are relative to the initial equilibrium with actual
trade costs. The last column displays the percentage change in each outcome between the second and first scenario.

Online Table B.9. The Complementarity Between Market Structure and
Trade Costs - Average non-EU Market

Outcome Variable Actual Trade Costs Low Trade Costs % Change

Panel A: Robot Sellers

Number of Sellers Sd 0.050% 0.051% 2.000%

Markups µ̄d -0.003% -0.004% 33.333%

Panel B: Final Goods Producers

Robot Price rd 1.219% 1.053% -13.618%

Robot Stock Rd 0.735% 0.792% 7.755%

Producer Price Index pd 1.218% 1.053% -13.547%

Output Yd 0.717% 0.774% 7.950%

Panel C: Households

Consumer Price Index Pd 0.813% 0.653% -19.680%

Welfare Routine Wd(r) -0.978% -0.670% -31.493%

Welfare Non-Routine Wd(n) -0.979% -0.670% -31.563%

Income Inequality Ed(n)/Ed(r) -0.000% 0.000%

Note: The table summarizes the effects of a 5% EU-wide value-added tax on robot adoption in the average non-EU market.
Panel A shows the effects on robot sellers. Panel B shows the effects on final goods producers. Panel C shows the effects on
households. I compare two scenarios. In the first, I leave trade costs at their level observed in the data. In the second, trade costs
between all country pairs are reduced by 5%. In the first two columns, outcomes changes are relative to the initial equilibrium
with actual trade costs. The last column displays the percentage change in each outcome between the second and first scenario.
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Online Table B.10. An EU-wide versus a Worldwide Robot Tax

Outcome Variable EU-wide Tax Worldwide Tax
Panel A: EU
Number of Sellers Sd -2.287% -0.451%
Markups µ̄d 0.239% 0.051%
Robot Price rd 5.519% 5.433%
Robot Stock Rd -5.675% -2.046%
Producer Price Index pd 1.947% 2.079%
Output Yd -2.362% 1.172%
Consumer Price Index Pd 0.915% 1.726%
Welfare Routine Wd(r) 2.968% 0.422%
Welfare Non-Routine Wd(n) -2.290% -4.394%
Income Inequality Ed(n)/Ed(r) -5.094% -4.795%
Panel B: Non-EU
Number of Sellers Sd 0.050% -0.407%
Markups µ̄d -0.003% 0.031%
Robot Price rd 1.219% 6.010%
Robot Stock Rd 0.735% -4.762%
Producer Price Index pd 1.218% 2.649%
Output Yd 0.717% -1.636%
Consumer Price Index Pd 0.813% 1.742%
Welfare Routine Wd(r) -0.978% 0.964%
Welfare Non-Routine Wd(n) -0.979% -3.860%
Income Inequality Ed(n)/Ed(r) -0.000% -4.778%

Note: The table compares the effects of a 5% unilateral (EU-wide) and multilateral
(worldwide) value-added tax on robot adoption. Panel A shows the effects in the average
EU market. Panel B shows the effects in the average non-EU market. All outcomes changes
are relative to the initial equilibrium without tax.
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Online Table B.11. The Effects of an EU-wide Robot Tax Within EU and
non-EU Markets

Counterfactual EU Mean Q25 Median Q75
Panel A: Robot Stock, Rd

First Scenario 0 0.837% 0.000% 0.147% 0.190%
First Scenario 1 -4.892% -5.056% -4.346% -4.063%
Second Scenario 0 0.735% 0.013% 0.101% 0.514%
Second Scenario 1 -5.675% -6.853% -5.727% -5.377%
Panel B: Output, Yd
First Scenario 0 0.835% 0.000% 0.147% 0.190%
First Scenario 1 -1.787% -1.958% -1.225% -0.928%
Second Scenario 0 0.717% 0.004% 0.101% 0.375%
Second Scenario 1 -2.362% -3.062% -2.651% -2.224%
Panel C: Welfare Routine, Wd(r)
First Scenario 0 -0.418% -0.603% -0.308% -0.295%
First Scenario 1 3.345% 2.766% 3.151% 3.779%
Second Scenario 0 -0.978% -1.281% -1.164% -0.961%
Second Scenario 1 2.968% 2.587% 3.453% 4.719%
Panel D: Welfare Non-Routine, Wd(n)
First Scenario 0 -0.419% -0.603% -0.308% -0.296%
First Scenario 1 -1.577% -2.129% -1.762% -1.163%
Second Scenario 0 -0.979% -1.285% -1.149% -0.962%
Second Scenario 1 -2.290% -2.399% -1.474% -1.391%

Note: The table summarizes the effects of a 5% EU-wide value-added tax on robot adoption the across
EU and non-EU markets. Each panel refers to a different outcome, and I compare two scenarios. In
the first scenario, robot sellers are unable to adjust their entry choices and markups once the tax is
implemented. In the second, they can change the set of markets served and the markups charged in each
market. All outcomes changes are relative to the initial equilibrium without tax.
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Online Table B.12. The Effects of an EU-wide Robot Subsidy

Outcome Variable Value
Panel A: EU
Number of Sellers Sd 0.994%
Markups µ̄d -0.129%
Robot Price rd -5.155%
Robot Stock Rd 8.233%
Producer Price Index pd -1.856%
Output Yd 2.786%
Consumer Price Index Pd -0.991%
Welfare Routine Wd(r) -1.253%
Welfare Non-Routine Wd(n) 4.013%
Income Inequality Ed(n)/Ed(r) 5.335%
Panel B: Non-EU
Number of Sellers Sd -0.056%
Markups µ̄d 0.005%
Robot Price rd -1.041%
Robot Stock Rd -0.135%
Producer Price Index pd -1.042%
Output Yd -0.121%
Consumer Price Index Pd -0.670%
Welfare Routine Wd(r) 1.515%
Welfare Non-Routine Wd(n) 1.513%
Income Inequality Ed(n)/Ed(r) -0.002%

Note: The table summarizes the effects of a 5% EU-wide
value-added subsidy on robot adoption in the EU and be-
yond. Panel A shows the effects in the average EU market.
Panel B shows the effects in the average non-EU market.
All outcomes changes are relative to the initial equilibrium
without subsidy.

C Additional Background

C.1 The Location of Production Facilities

To identify countries in which the top 10 multinational robot manufacturers (see Section

3) have production facilities, I proceed in three steps.

• Using the R package concordance,18 I identify that robots (HS 847959) are

18Steven Liao, In Song Kim, Sayumi Miyano, Hao Zhang (2020). concordance: Product Concor-
dance. R package version 2.0.0. https://CRAN.R-project.org/package=concordance
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produced by firms in the “Other General Purpose Machinery Manufacturing”

industry (NAICS 3339).

• Using Orbis, I construct the global network of subsidiaries of the top 10 robot

manufacturers. I identify 1032 subsidiaries in total. Next, I check the main sector

of activity of each subsidiary, as indicated by their NAICS code. This information

is non-missing for 819 (80%) subsidiaries.

• I select the subsidiaries reporting NAICS 3339 as their main industrial activity

in 2021, and I consider them as the manufacturers’ production facilities. Last,

compute the number of production facilities per country.

The procedures identifies production facilities in the following countries: Belgium,

Canada, China, Czech Republic, Germany, Great Britain, Italy, Japan, Norway, Slo-

vakia, Slovenia, South Korea, Sweden, the Netherlands, and the US. I cross-check this

list with information about the export of robots from the BACII dataset. Reassur-

ingly, the correlation between the number of production facilities and the export value

of robots at the country level is 55%. The correlation is significant at the 1% level.

C.2 Technological Requirements for Robot Production

Robot production involves three main stages: design, fabrication, and assembly. The

design stage has high technological requirements. Fabrication and assembly are capital-

intensive activities, and robots are usually assembled by other robots. Three elements

suggest that high initial sunk and fixed production costs can help explain the concen-

tration in robot sales documented in Section 3.

• The top 10 robot producers started developing robots around 50 years ago. For

instance, ABB launched its first robot in 1978, Fanuc in 1974, Kuka in 1973, and

Yaskawa in 1977. The other six firms in the top 10 started producing robots

between the end of the 1970s and the beginning of the 1980s. This information

comes from the sellers’ websites.

• Using Orbis, I find that the average top 10 robot producer reports a share of

R&D expenses over sales equal to 3.5%. For reference, the average non-top 10

producer registered with the IFR reports a share of 2.8%. It is also useful to

benchmark this share against that reported by firms in other sectors. To do so, I
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compute the share of R&D expenses over sales for the top 500 firms in Orbis in

terms of sales, employment, and fixed assets. This set includes Apple, Alphabet,

and Microsoft, among others. Notably, no top 10 robot producer belongs to this

list. Although the average top 500 firm in Orbis reports 12 times higher sales

than the average top 10 robot producer, its share of R&D expenses over sales is

equal to 2.9%, which is 6 percentage points lower than that of the average top

10 robot producer.

• Using Orbis Intellectual Property (IP), a Moody’s dataset containing information

about patents and their ownership, I find that concentration in sales aligns with

concentration in patents.

– I download from Orbis IP all patents that contain the word “industrial

robots” in the title, abstract, or description. Whenever not reported in

English, I translate the patent assignee name using the Google Translate R

API.19

– I match patents to their owners in Orbis. Among the 26 firms registered

with the IFR, the top 10 accounting for 90% of global sales also hold 81% of

the stock of active patents in 2021. Their patents also receive more citations

on average (4 for the top 10 sellers vs. 3.3 for the others) and have longer

expiry dates (nine years for the top 10 sellers vs. three years for the others).

C.3 Case Studies about Integration Services

Case studies available on the sellers’ websites illustrate the central role of integration

services. The typical case study describes a firm seeking help to automate parts of its

production (e.g., stacking crates, handling products, or lifting components), and how

a local branch of a robot seller helped the firm by selecting a standardized robot and

tailoring it to its needs. I provide three examples below:

• A Swiss firm producing turf wanted to automate the operation of palletizing is

harvest. To do so, the company resorted to the help of a Swiss branch of Fanuc

who adapted and mounted a robot to the rear of an harvester to facilitate the

palletization of turf rolls. Additional details can be found here.

19See https://github.com/ropensci/googleLanguageR.

13

https://www.fanuc.eu/uk/en/customer-cases/uk-green-services-success-story
https://github.com/ropensci/googleLanguageR


• A Brazilian meat producer wanted to develop an automated high-speed line for

producing and handling simultaneously different types of meat. To achieve this

goal, the company contacted a Brazilian branch of ABB, who installed different

robots at the meat producer’s plant to pick both light and heavy products and

palletizing them. Additional details can be found here.

• A food company approached a US branch of KUKA to automate the process

of stacking milk crates on pallets in the cold storage warehouse. The branch

selected a suitable robot for the company and customized it to be able to work

in a unusually cold environment. Additional details can be found here.

D Data Appendix

D.1 Web Scraping Algorithm

I construct the global sales network of the top 10 multinational robot sellers identified in

Section 3 using the following procedure: (1) I access the “Where to Find Us” section on

the firms’ websites, where they provide information about their global footprint. Typ-

ically, firms list the location of their HQ, sales branches of robots and other products,

education and training centers; (2) Using the Python library Selenium,20 I web scrape

the name and geographical address of each entity listed in that section. Whenever

available, I also collect additional information (e.g., product sold and services offered).

Data cleaning involves two steps. First, I separate sales branches where costumers

can purchase robots and integration services from entities performing other activities

(e.g., training or production centers, consumers’ help desks, and research laboratories).

This step is uncontroversial since companies report this information on their website.

Second, I distinguish between branches selling robots and providing integration services

and those commercializing other products (e.g., precision machinery, engines, gener-

ators, drives, and computer systems). This step is straightforward when companies

directly report the information on their websites. However, in cases where the infor-

mation is not explicitly stated, I apply the following conservative rules. First, if the

branch name hints at non-robot sales (e.g., contains “electronic provider”), I exclude

it from the sample. Second, I exclude branches located in countries where the IFR

20See https://github.com/seleniumbase/SeleniumBase.

14

https://new.abb.com/news/detail/96510/cstmr-brazilian-meat-producer-moves-to-highly-flexible-product-picking-with-abb-robots
https://www.kuka.com/en-gb/industries/solutions-database/2022/08/palletizing-of-food-and-beverages-ipm
https://github.com/seleniumbase/SeleniumBase


does not document any robot usage. I keep branches selling both robots and other

products.

D.2 Measurement of Market Shares

Information about sales is available for 300 (55%) of the 538 branches that can be found

in Orbis. Using this sub-sample, I can compare two measures of market share. The first

is based on the number of branches that a seller has in a country, i.e., s
(1)
sd = bsd∑

s∈Sd
bsd
.

bsd is the number of branches of seller s in country d, and Sd is the set of sellers selling

in d. The second measure is based on the sales of the branches that a seller has in a

country, i.e., s
(2)
sd =

∑
b∈Bsd

vb(s)d∑
s∈Sd

∑
b∈Bsd

vb(s)d
. vb(s)d denotes sales of branch b belonging to seller

s in country d in USD millions. Bsd is the set of branches that s has in d. The Pearson

correlation between s
(1)
sd and s

(2)
sd is 67%∗∗∗. The Spearman correlation is 53%. The first

two columns of Online Table D.1 show that the positive and significant correlation

between the two measures is robust to controlling for seller and country fixed effects.

Because country fixed effects absorb the denominators of s
(1)
sd and s

(2)
sd , there is also a

positive correlation between the number of branches and sales in (log) levels, as shown

by the last two columns. Overall, sellers with more branches also appear to sell more.

I prefer s
(1)
sd to s

(2)
sd because it can be constructed for more seller-market pairs.
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Online Table D.1. Measuring Market Shares

Dependent Variables: Mkt Share (Sales)sd Log Salessd
(1) (2) (3) (4)

Mkt Share (Branches)sd 0.83∗∗∗ 0.48∗∗

(0.07) (0.24)
Log Branchessd 1.1∗∗∗ 0.77∗∗∗

(0.19) (0.25)
Country FE No Yes No Yes
Seller FE No Yes No Yes

Observations 133 133 133 133
R2 0.45 0.55 0.22 0.64
Within R2 0.06 0.10
Estimator OLS OLS OLS OLS

Note: An observation is a robot seller-destination country pair.
Mkt Share (Sales)sd is the market share of seller s in country d based on
the sales of its branches. Mkt Share (Branches)sd is the market share of seller
s in country d based on its number of branches. Log Salessd are the total
sales of the branches of seller s in market d. Branchessd is the number of
branches of seller s in country d. Heteroscedasticity-robust standard errors
in parenthesis. Significance levels: *** 0.01, ** 0.05, * 0.1.

D.3 Data Validation

I validate the own-collected information about global sales networks against three es-

tablished data sources (IFR, BACII, and Orbis).

• I estimate the following country-level equation:

Robotsd = α + βBranchesd + γControlsd + εd.

Robotsd is the number of robots in country d reported by the IFR. Branchesd is the

self-collected number of multinational sellers’ branches in country d. Controlsd in-

clude Log GDP per capita. εd is the error term. Online Table D.2 shows the esti-

mates. Number of Branchesd explains 56%-57% of the variation in Number of Robotsd.
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Online Table D.2. Robots vs Branches

Dependent Variable: Robotsd
(1) (2)

Branchesd 0.62∗∗∗ 0.63∗∗∗

(0.21) (0.21)
Controls No Yes

Observations 45 45
R2 0.56 0.57
Estimator OLS OLS

Note: An observation is a destination country.
Robotsd is the number of robots in country d.
Branchesd is the number of branches in country
d. Controls include include the GDP per capita
(in 2010 USD PPP). Heteroscedasticity-robust
standard errors in parenthesis. Significance lev-
els: *** 0.01, ** 0.05, * 0.1.

Additionally, Corr(Branchesd,Robot Stockd) = 75%∗∗∗.

• I estimate the following equation:

Trade in Robotsod = βBranchesod + γControlsod + FEo + FEd + εod.

Trade in Robotsod is the export value of robots (HS 847950) from o to d in million

current USD reported in the BACI dataset. Branchesod is the self-collected num-

ber of branches that multinational sellers headquartered in o open in d. Controlsod

include Log of bilateral distance in kilometers. FEo are origin fixed effects, FEd

destination fixed effects, and εod the error term. Online Table D.3 shows the

estimates. Even after controlling for origin and destination fixed effects, as well

as bilateral distance, Number of Branchesod explains 61% of the within R2 of

Trade in Robotsod.
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Online Table D.3. Trade vs Branches

Dependent Variable: Trade in Robotsod
(1) (2) (3)

Branchesod 10.5∗∗∗ 11.8∗∗∗ 11.3∗∗∗

(3.8) (3.9) (3.9)
Origin FE No Yes Yes
Destination FE No Yes Yes
Controls No No Yes

Observations 133 133 133
R2 0.60 0.75 0.75
Within R2 0.61 0.61
Estimator OLS OLS OLS

Note: An observation is an origin-destination country
pair. Trade in Robotsod is the export value of robots (HS
847950) from o to d in million current USD. Branchesod is
the self-collected number of branches that multinational
sellers headquartered in o open in d. Controls include
Log of bilateral distance in kilometers. Heteroscedasticity-
robust standard errors in parenthesis. Significance levels:
*** 0.01, ** 0.05, * 0.1.

Additionally, Corr(Branchesod,Trade in Robotsod) = 77%∗∗∗.

• I estimate the following seller-country level equation:

Bs(o)d = βSs(o)d + FEs + FEd + εs(o)d.

Bs(o)d is either an indicator equal to 1 if multinational seller s from HQ o has

at least one branch in country d (extensive margin) or the number of branches

that s has in country d (intensive margin). Ss(o)d is either an indicator equal

to 1 if seller s from HQ o has at least one subsidiary in country d (extensive

margin) or the number of subsidiaries that s has in country d (intensive margin).

Subsidiaries include those unrelated to robots, as reported in Orbis. FEs and

FEd are seller and country fixed effects, and εs(o)d the error term. Online Table

D.4 shows the estimates. The presence of sales branches is positively correlated

with the presence of subsidiaries, even after controlling for FEs and FEd.
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Online Table D.4. Branches vs Subsidiaries

Dependent Variables: Branch Dummysd Branchessd
(1) (2) (3) (4)

Subsidiary Dummysd 0.44∗∗∗ 0.32∗∗∗

(0.03) (0.04)
Subsidiariessd 0.16∗∗∗ 0.10∗∗

(0.06) (0.05)
Country FE No Yes No Yes
Seller FE No Yes No Yes

Observations 920 920 155 155
R2 0.24 0.57 0.14 0.52
Within R2 0.11 0.05
Estimator OLS OLS OLS OLS

Note: An observation is a robot seller-destination country pair.
Branch Dummys(o)d is an indicator equal to 1 if seller s from HQ o has
at least one branch in country d. Subsidiary Dummys(o)d is an indicator
equal to 1 if seller s from HQ o has at least one subsidiary in country
d. Branchess(o)d is the number of branches that seller s from HQ o has
at least one branch in country d. Subsidiariess(o)d is the number of sub-
sidiaries that seller s from HQ o has at least one branch in country d.
Heteroscedasticity-robust standard errors in parenthesis. Significance
levels: *** 0.01, ** 0.05, * 0.1.

Additionally, Corr(Subsidiariess(o)d,Branchess(o)d) = 48%∗∗∗ at the extensive

margin and 38%∗∗∗ at the intensive margin.

E Theoretical Appendix

E.1 Multi-Branch Multinational Robot Sellers

I extend the model presented in Section 5 to feature multi-branch multinational robot

sellers. While this model delivers similar predictions as the baseline one, it provides

a micro-foundation for the fact that sellers that open more branches in a market also

sell more robots.

Nested Robot Demand. I assume that seller s in market d supplies an indivisible

bundle of generic robots and integration services, which I refer to as a “product” and

define by Řsd. In turn, this product is a bundle of the varieties offered by branches b of
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seller s in market d, which I denote Rb(s)d. Formally, Rd used by final goods producers

defined as:

Rd =

(∑
s∈Sd

φ
1
σ
sdŘ

σ−1
σ

sd

) σ
σ−1

, Řsd =

(∑
b∈Bsd

R
ρ−1
ρ

b(s)d

) ρ
ρ−1

, ρ ≥ σ > 1. (E.1)

Notation follows from equation (7). Combining the first-order conditions of equations

(6) and (E.1), the demand faced by each branch can be expressed as:

Rb(s)d = φsdr
−ρ
b(s)dř

ρ−σ
sd rσ−1d βῑdpdYd. (E.2)

rb(s)d is the price charged by branch b of seller s in market b, rsd is the price index of

seller s in market d, and rd is the market-level price of robots. Branches internalize the

effect of their choices on the sector price index rd but not on economy-wide variables.

Profit Maximization. Sellers choose the number of branches to open in each market

and the prices charged by each of their branches. Let Bsd be the set of branches that

s operates in d. I assume that seller s in market d solves the following problem:

max
{rsd,bsd}≥0

∑
b∈Bsd

(rb(s)d − wd(n))Rb(s)d − wd(n)
b
1+ 1

λ
sd

1 + 1
λ

− wd(n)f, λ > 0 (E.3)

s.t. equation (E.2) (E.4)

b
1+ 1

λ
sd /

(
1 + 1

λ

)
is a convex cost of opening branches.

Equilibrium Conditions. Since demand shifters φsd are seller-market-specific and

retail costs wd(n) market-specific, sellers equalize the markups charged by their branches,

which gives rise to a symmetric pricing rule within sellers in equilibrium.21 Hence, the

demand function in equation (E.2) can be expressed as:

Rsd = φsdr
−σ
sd b

ρ−σ
1−ρ
sd rσ−1d βῑdpdYd. (E.5)

21This equilibrium condition parallels the one derived by Hottman et al. (2016) for multi-product
firms.
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The sellers’ maximization problem can be formulated as:

max
{rsd,bsd}≥0

(rsd − wd(n))bsdRsd − wd(n)
b
1+ 1

λ
sd

1 + 1
λ

− wd(n)f, λ > 0 (E.6)

s.t. equation (E.5). (E.7)

The first-order conditions associated with this problem deliver the following equilibrium

expressions for the price of robots and number of branches:

rsd =
εsd

εsd − 1
wd(n), bsd =

[
(rsd − wd(n))(σ − 1)(1− ssd)R̃sdφsd

(ρ− 1)wd(n)

]λ
. (E.8)

R̃sd is quality-adjusted robot demand. The market share of seller s in market d is:

ssd =
φsdb

1−ρ
1−σ
sd r1−σsd∑

s∈Sd φsdb
1−ρ
1−σ
sd r1−σsd

. (E.9)

All else equal, sellers with higher φsd open more branches, sell more robots, and charge

higher markups.

Closing the Model. The other equilibrium conditions are unchanged, except for

the non-routine labor market clearing condition which now reads:

L̄d(n) =
(1− β)pdYd
wd(n)

+Rd +
∑
s∈Sd

b
1+ 1

λ
sd

1 + 1
λ

+ |Sd|f. (E.10)

E.2 Alternative Marginal Cost Specifications

The baseline model assumes that robot sellers only need local non-routine workers to

sell products (i.e., indivisible bundles of generic robots and integration services). I

impose this assumption to abstract from the production and exports of generic robots

and focus on competition in sales in destination markets. In this section, I discuss how

to allow for production and trade in generic robots.

Accounting for Production and Trade in Generic Robots. Generic robots

are produced by MNEs in their HQ market o, exported to a destination market d, and
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sold there bundled with integration services. MNEs need non-routine labor to produce

generic robots in o.22 As in the baseline model, selling generic robots bundled with

integration services in d requires local non-routine labor. In this case, the marginal

cost of selling robots in market d is:

todwo(n)γwd(n)1−γ, γ ∈ (0, 1). (E.11)

Let tod = 1 if o = d and tod ≥ 1 if o 6= d. This term captures the trade cost that MNE s

from market o faces when selling robots in a foreign market d. This specification implies

that entry in the robot sector of market d is constrained both by the available amount

of non-routine workers in d as well as in the HQ country, and equation (21) should

be modified accordingly. If robot production requires paying a fixed cost in terms of

non-routine labor in the HQ country, this cost must be subtracted from MNEs’ profits

in equation (8).

E.3 Derivations

This section shows the derivations generating Figure 3.

Entry Reduces Incumbents’ Prices. The price of any symmetric incumbent robot

seller is, for w(n) = 1:

r = µ =
σ − (σ − 1) 1

|S|

σ − (σ − 1) 1
|S| − 1

. (E.12)

Therefore:

∂r

∂|S|
|S|
r

=
∂ log r

∂|S|
|S| =

(
(σ − 1)(ε− 1) 1

|S|2 − (σ − 1)ε 1
|S|2

µ(ε− 1)2

)
|S| (E.13)

=
(1− σ)

ε(ε− 1)2|S|
< 0. (E.14)

22This assumption can be relaxed to allow robot production require both routine and non-routine
workers in the HQ.
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Entry Reduces the Aggregate Robot Price. The log of the aggregate price of

robots is:

log ř =
1

1− σ
log |S|+ log r +

1

1− σ
log φ. (E.15)

Therefore:

∂ř

∂|S|
|S|
ř

=
∂ log ř

∂|S|
|S| =

(
1

(1− σ)|S|
+

1

r

∂r

∂|S|

)
|S| (E.16)

=
1

(1− σ)
+

∂r

∂|S|
|S|
r

(E.17)

=
1

(1− σ)
+

(1− σ)

ε(ε− 1)2|S|
< 0. (E.18)

Entry Reduces the Price Index. The log of the aggregate price index is:

log p = log

(
β̄

A

)
+ β log ř (E.19)

Therefore:

∂p

∂|S|
|S|
p

=
∂ log p

∂|S|
|S| = β

∂ř

∂|S|
|S|
ř

=
β

(1− σ)
+

β(1− σ)

ε(ε− 1)2|S|
< 0. (E.20)

F Quantitative Appendix

F.1 Algorithm to Solve the Model

Given the parameters in Table 2, the model can be solved using the following algorithm:

1. Guess a value of wd(n) and rd for each market as well as aggregate profits Π;

2. Set rd = wd(r) and find pd = β̄wd(r)
βwd(n)1−β/Ad, β̄ = β−β(1− β)β−1;

3. Find Yd using equation (19) and ῑd using equation (20). Then compute the

expenditure on robots βῑdpdYd in each market;

4. Solve the sellers’ sequential entry game market-by-market:

(a) Let S = 1. Use a fixed-point search to find rsd from equation (14);

(b) Compute profits πsd;
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(c) If πsd > wd(n)f , let S = 2 and repeat from (4.a);

(d) Stop when last entrant would make negative profits.

5. Find a new vector of market-level robot prices r′d and aggregate profits Π′;

6. Find a new vector of market-level non-routine wages wd(n)′ (up to a numéraire);

7. Iterate until ||rd − r′d|| < tol, ||wd(n)− wd(n)′|| < tol, and |Π− Π′| < tol.

When searching for the fixed point of the robot sellers’ problem and the GE allocation,

I follow Gaubert and Itskhoki (2021) and update prices taking a half step between the

old guess and the new one at each iteration. Notice that equation (14) is only defined

for S ≥ 2. When initializing the inner loop to solve the sellers’ problem, I modify

equation (14) assuming that the seller behaves as a local monopolist. In this case, the

optimal pricing rule can be written as rsd = σ
σ−1wd(n).

F.2 Simulated Method of Moments Algorithm

The SMM procedure to find the parameters to be estimated in Table 2 reads as follows:

1. Draw B matrices with dimension |S| × |M| of normally distributed i.i.d. shocks

with mean zero and unit variance, being |S| the total number of sellers and |M|
the total number of markets. I use Sobol sequences to cover the support of the

normal distribution more efficiently than if numbers were drawn at random. In

practice, I set B = 200;

2. Guess a vector of parameters Θ;

3. For each of the B matrices of random shocks:

(a) Compute demand shifters using equation (26);

(b) Solve the model using the algorithm described in Section F.1;

(c) Compute the model-implied moments of interest and store them.

4. Compute the average model-implied moments of interest across the B samples.

Denote m(Θ) the resulting vector;

5. Update the guess of Θ to minimize the SMM objective function L(Θ) = (m(Θ)−
m̄)′W (m(Θ)− m̄).
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In operationalize this procedure in two steps. First, I adopt an adaptive radius lim-

ited differential evolution algorithm to find the starting values of the SMM routine.23

Second, I run a local search using a standard quasi-Newton algorithm around these

values. In practice, this second step stops after a few iterations and only marginally

reduces the SMM objective function. The confidence intervals in Table 2 are computed

using the bootstrap procedure of Bernard et al. (2022). The procedure is performed as

follows. First, for each bootstrap sample, I draw sellers and markets with replacement

until I obtain the same sample size as in the data. Second, I compute the empirical

moments used in the SMM procedure for each bootstrap sample. Third, I estimate the

model parameters at each sample using the procedure described above. The standard

errors in Table 2 are the standard deviation of the distribution of the estimates across

samples. I employ 200 replications.

F.3 Counterfactual Scenario: Robot Tax

Algorithm. I modify the algorithm in Section F.1 to account for the presence of a

tax as follows:

1. Guess a value of wd(n) and rd for each market as well as aggregate profits Π and

total tax transfers TEU =
∑

d∈M 1{d ∈ EU}tdrdRd;

2. Set rd = (1 + τd)wd(r) and find pd = β̄wd(r)
βwd(n)1−β/Ad, β̄ = β−β(1− β)β−1;

3. Find households’ disposable income Ed(i) using equation (4);

4. Find Yd using equation (19) and ῑd using equation (20). Then compute the

expenditure on robots βῑdpdYd in each market;

5. Solve the sellers’ sequential entry game market-by-market:

(a) Let S = 1. Use a fixed-point search to find rsd from equation (14);

(b) Compute profits πsd;

(c) If πsd > wd(n)f , let S = 2 and repeat from (5.a);

(d) Stop when last entrant would make negative profits.

23This algorithm is available through the Julia package BlackBoxOptim.jl, and it is shown to
perform well in finding the global minimum of non-linear problems.
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6. Find a new vector of market-level robot prices r′d, aggregate profits Π′, and tax

transfers T ′EU ;

7. Find a new vector of market-level non-routine wages wd(n)′ (up to a numéraire);

8. Iterate until ||rd − r′d|| < tol, ||wd(n) − wd(n)′|| < tol, |Π − Π′| < tol eand

|TEU − T ′EU | < tol.

Also in this case, I update prices taking a half step between the old guess and the

new one at each iteration. As before, I modify equation (14) assuming that the seller

behaves as a local monopolist when Sd = 1.

First Scenario. In the first scenario, the counterfactual outcomes are computed as

follows:

1. For each of the B matrices of φsd demand shifters used in the SMM procedure

(see Section F.2):

(a) Solve the model without tax using the algorithm described in Section F.1;

(b) Store the number of sellers per market Sd and their demand shifters φsd;

(c) Find the equilibrium of the model without and with tax given Sd and φsd.

This can be done by using the algorithm described in the paragraph at the

beginning of Section F.3 but skipping step 8;

(d) Compute the percentage changes in the outcomes of interest between equi-

libria.

2. Compute the average change in the outcomes of interest across the B draws.

Second Scenario. In the second scenario, the counterfactual outcomes are computed

as follows:

1. For each of the B matrices of φsd demand shifters used in the SMM procedure

(see Section F.2):

(a) Solve the model without tax using the algorithm described in Section F.1;

(b) Solve the model with tax using the algorithm described in the paragraph at

the beginning of Section F.3;
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(c) Compute the percentage changes in the outcomes of interest between equi-

libria.

2. Compute the average change in the outcomes of interest across the B draws.

I assume that a robot tax is implemented before robot sellers make entry choices.

In the first scenario, this choice is inconsequential because entry choices and markups

are held constant. In the second, it requires solving the problem of robot sellers in

an economy without and with taxes (i.e., one in which τd = 0 everywhere and one in

which τEU = 5%).

F.4 Counterfactual Scenario: Competition Policy

I use the algorithm in Section F.1 to solve for the new equilibrium. When reducing

entry costs while keeping the number of robot sellers constant, I simply discount the

parameter f before solving the model. To simulate the entry of a new Asian robot

seller, I add a row to the matrix of demand shifters in equation (26). I assign to this

new robot seller φH as average appeal. The distance from China to each country comes

from the data. Error terms are sampled from the N(0, 1) distribution.
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